$=8.2, \mathrm{ArH}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{Ar} \mathrm{H})$,
(4S,5R)-5-Benzyl-4-carboxyimidazolidin-2-one (8b). The urea 37 ($30 \mathrm{mg}, 0.065 \mathrm{mmol}$) was deprotected as described for compound $\mathbf{7 b}$ to give 13.7 mg (96%) of $\mathbf{8 b}$, identical with that described earlier.
(4S,5R)-5-Benzyl-4-(methoxycarbonyl)imidazolidin-2-one (35). The acid 8 b ($22 \mathrm{mg}, 0.1 \mathrm{mmol}$) was stirred in a mixture of methanol (20 mL) and thionyl chloride (5 drops) at room tem-
perature for 12 h . The reaction mixture was concentrated to give the methyl ester 35 in quantitative yield: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{0} \mathrm{D}\right) \delta 2.91$ (d, $2 \mathrm{H}, J=5.8, \mathrm{CH}_{2} \mathrm{Ph}$), 3.69 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 4.09-4.15 (m, $2 \mathrm{H}, \mathrm{C} 4-\mathrm{H}$ and $\mathrm{C} 5-\mathrm{H}$), $7.21-7.34$ (m, $5 \mathrm{H}, \mathrm{Ar} \mathrm{H}$).

Acknowledgment. R. Häner thanks the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung for a fellowship.

Enantiodivergent Synthesis of (+)- and (-)-Anatoxin from L-Glutamic Acid

F. Javier Sardina, Michael H. Howard, Marshall Morningstar, and Henry Rapoport*
Department of Chemistry, University of California, Berkeley, California 94720

Received March 23, 1990

The optically pure 2,5-difunctionalized homotropane 11, prepared from L-glutamic acid, serves as the common, advanced intermediate for the synthesis of either natural $(+)$-anatoxin ($30,18 \%$ overall yield) or unnatural $(-)$-anatoxin ($33,30 \%$ overall yield) by selective manipulation of either the $\mathrm{C}-2$ ester or $\mathrm{C}-5$ acetyl functionalities. Side-chain substitution in the decarbonylative iminium ion cyclization of a substituted proline enhanced the yield by 25% as compared to the unsubstituted parent system. The additional substitution at C-5 of the 9 -azabicyclo[4.2.1]nonane ring system allows access to analogues of anatoxin not available through other syntheses.

Anatoxin-a, a strong nerve-depolarizing agent isolated from strains of the fresh water blue-green alga Anabaena flos-aquae (Lyng.) de Breb, ${ }^{1}$ has played a central role in neurotransmission research during the last decade, since it is the most potent agonist known for the nicotinic acetylcholine receptor (nAChR). ${ }^{2}$ In our previous publications, ${ }^{3}$ we have presented the enantiospecific synthesis of $(+)$-anatoxin from D-glutamic acid as well as that of a number of its analogues. We have also summarized the synthetic activity of others in this field, all of which led to racemic material. ${ }^{3 f}$ We now report an enantiodivergent synthesis of either $(+)$ - or ($(-)$-anatoxin proceeding along a common path from L-glutamic acid.

Results and Discussion

Synthesis of 2,5-Difunctionalized Homotropanes 11. The synthesis of our first key intermediate, vinylogous methyl carbamate 6, follows closely that reported for its benzyl ester analogue ${ }^{3 \mathrm{a}}$ and is presented in Scheme I. The required methyl α-hydroxy ester 3 was prepared from bromo ketal 1. Thus the Grignard reagent from 1 reacted with dimethyl oxalate to give α-keto ester 2 , which was hydrogenated (Pt / C) to give hydroxy ester 3. The sul-fide-contraction reaction between α-triflate 4 and thiolactam 5 proceeded as previously to give vinylogous carbamate 6 as a $4 / 1$ mixture of double-bond isomers. Strict temperature control during the sulfide-contraction step is critical for the success of this reaction: below $-10^{\circ} \mathrm{C}$ little

[^0]
or no reaction occurs, while above $0^{\circ} \mathrm{C}$ some racemization is observed. ${ }^{4}$ Hydrogenation of the carbon-carbon double bond in 6 was achieved over Pd / C in methanol. The initial product contained some N -debenzylated material, and rebenzylation gave proline ester 7 as a $4 / 1$ mixture of epimers at C -6.
In the previous synthesis, ${ }^{3}$ where the vinylogous carbamate was present as its benzyl ester, hydrogenation proceeded by initial O-debenzylation, decarboxylation, and double-bond reduction in a highly stereoselective process. ${ }^{3 \mathrm{a}, \mathrm{b}, 4}$, The present substitution pattern, in which the ester function is retained at C-6, gave identical results; none of trans-pyrrolidine 7 could be detected in the crude product. Acidic hydrolysis then afforded a chromatographically resolvable mixture of keto acids 8α and 8β. Although the stereochemistry at C-6 could not be established at this stage, the stereochemical outcome of the two subsequent steps allowed assignment of $8 \beta(6 R)$ to the minor, less polar product and $8 \alpha(6 S)$ to the major, more polar product.

[^1]Scheme II. Conversion of Difunctionalized Homotropanes to (+)-Anatoxin and Some Analogues

In the past, the decarbonylation-iminium ion cyclization to form the 9 -azabicyclo[4.2.1]nonane ring system had been effected with an unsubstituted side chain. ${ }^{3}$ The first application of this cyclization in the presence of a side-chain substituent was to the 6 -methoxycarbonyl derivative 7 . When keto acid 8α was treated with oxalyl chloride to generate the corresponding iminium salt 9α, cyclization took place to give a $3 / 1$ mixture of azabicyclononanes 10a and 10 b in 91% yield.
Analysis of the chemical shifts of H-2 and H-5 in 10a and 10 b allowed assignment of the stereochemistry of the acetyl and methoxycarbonyl side chains. In the 9 -azabicyclo[4.2.1]nonane system, the $\mathrm{C}-1-\mathrm{N}$ and the $\mathrm{C}-6-\mathrm{N}$ bonds strongly deshield $\mathrm{H}-2$ and $\mathrm{H}-5$ when these protons possess a β-orientation. ${ }^{3 d}$ In the less polar, major product, $\mathrm{H}-5$ appears at 2.73 ppm (dt) while $\mathrm{H}-2$ resonates at higher field ($<2.50 \mathrm{ppm}$, not resolved). In the minor product, both protons appear above 2.30 ppm , indicating that the major isomer is 10 a and the minor one is 10 b . When the minor keto acid (8β) was submitted to the same cyclization conditions, a mixture of two compounds (different from 10a and 10b) was obtained, again in 91% yield. Since the products from this reaction could not be resolved, the stereochemical analysis was postponed until the next step. Debenzylation with simultaneous BOC protection (H_{2}, $\left.\mathrm{Pd} / \mathrm{C},(\mathrm{BOC})_{2} \mathrm{O}\right)$ afforded a $2 / 1$ mixture of isomers which were separated by chromatography. The minor, less polar product showed downfield shifts for both $\mathrm{H}-2$ (2.98 ppm) and H-5 (3.16 ppm); thus, it must be 11d. The major product showed only a downfield shift for $\mathrm{H}-2$ (two rotamers, 2.83 and 2.99 ppm) while $\mathrm{H}-5$ appeared at 2.40 ppm, corresponding to structure 11c. Debenzylation-BOC protection of 10 a and 10 b gave 11a and 11b, respectively, confirming the previous stereochemical assignments.

This stereochemical analysis answered several questions about the iminium ion cyclization. First, the effect of a C -6 substituent in iminium ion 9 improved the cyclization yield by 25% over the parent system. Second, the stereochemistry at C-6 does not affect the yield of the cyclization. Third, the cyclization conditions do not epimerize the C-6 stereocenter.
Conversion of Difunctionalized Homotropanes 11 to (+)-Anatoxin (30). Due to the formation of all stereoisomers at C-2 and C-5, our synthetic strategy required funnelling all four diastereoisomers $11 a-\mathrm{d}$ into the desired

Scheme III. Synthesis of (- -)-Anatoxin from

 Difunctionalized Homotropanes
target 29 and is presented in Scheme II. Ketones 13 appeared to be logical intermediates for this purpose since deoxygenation of the ketone carbonyl (C-2) and a onecarbon side-chain extension would lead to t-BOC-dihydroanatoxin (29), which can be oxidized to enone and quantitatively deprotected to afford (+)-anatoxin (30) in 84% yield. ${ }^{3 \mathrm{~d}}$ To degrade the C-5 acetyl side chain of 11 to the ring ketone of 13 required regiospecific formation of the thermodynamic enol ether 12 in the presence of an additional enolization site at the ester function. When the reaction conditions developed for regioselective t-BOCdihydroanatoxin TBDMS enol ether formation ${ }^{3 \mathrm{~d}}$ (NaH , $300 \mathrm{~mol} \%$, cat. $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{THF}$, room temperature) were applied to 11 , enol ether 12 was isolated in 60% yield, as a $6 / 1$ mixture of thermodynamic and kinetic silyl enol ethers (each as a mixture of epimers at C-5). Lowering the reaction temperature to $-15^{\circ} \mathrm{C}$ and decreasing the amount of the base to $200 \mathrm{~mol} \%$ greatly increased the selectivity of the reaction and resulted in thermodynamic enolate 12 as a $>20 / 1, Z / E$ mixture ($10 / 1$ mixture of α - and β-epimers at C-5) in 95% yield. The results were identical when the reaction was carried out on a mixture of all four ketones 11. All the steps from the reduction of vinylogous carbamate 6 to the formation of enol ether 12 can be carried out equally effectively on mixtures of epimers, thus greatly facilitating this synthetic sequence.

Ozonolysis ${ }^{3 e}$ of 12 proceeded without any complications to give 13α (less polar) and 13β (more polar), which were separated by chromatography, in 90% combined yield. The configurational assignment at C-5 in keto ester 13 was made on the basis of the relative downfield chemical shift of H-5 (rotamers: 2.98 and 3.15 ppm) in the less polar isomer, which is virtually identical with the chemical shift (rotamers: 2.97 and 3.12 ppm) for the corresponding proton in the analogous 2-deoxo compound, 27α. ${ }^{3 e}$ Conversion of the keto esters 13 to the thioketals 25 proceeded with concomitant loss of the t-BOC group. Reprotection of the nitrogen $\left((\mathrm{BOC})_{2} \mathrm{O}, \mathrm{MeOH}\right)$ gave 26, and hydrogenolysis of the thioketal with W-2 Raney nickel gave an excellent yield of methyl ($1 R$)-t-BOC-dihydroanatoxinate (27). Ester hydrolysis gave acid 28, which was converted to (1R)-t-BOC-dihydroanatoxin (29) in 80% overall yield (from 26) by conversion to the acid chloride followed by reaction with excess lithium dimethylcuprate. ${ }^{5}$ The dihydro ketones 29 could be converted to ($1 R$)- t-BOC-anatoxin (22) by selenenylation/oxidation (84% yield). ${ }^{3 d}$ Acid cleavage of the nitrogen protecting group proceeds quantitatively, thus completing the synthesis of natural (+)anatoxin (30) from L-glutamic acid in 18% overall yield.

Synthesis of (- --Anatoxin (33) from 2,5-Difunctionalized Homotropane 11. Unnatural (-)-anatoxin (33) has previously been prepared from L-glutamic acid ${ }^{3 a}$ using the same sequence of reactions used for the synthesis of $(+)$-anatoxin from D-glutamic acid. However, the advanced intermediate 11, derived in 43% yield from L-glutamic acid (Scheme I) and used for the synthesis of (+)-anatoxin (30) (Scheme II) might also serve as a precursor to (-)-anatoxin
(5) Posner, G. H.; Whitten, C. E. Tetrahedron Lett. 1970, 4647.
(33) if the C-2 carboxyl group could be removed. This has been accomplished in good yield via a reductive radical decarboxylation of an O -acyl thiohydroxamate ${ }^{6}$ as depicted in Scheme III.
Ester hydrolysis of keto esters 11 and conversion of the corresponding keto acids 31 to acid chlorides followed by treatment with 1-hydroxy-2(1H)-pyridinethione gave the O-acyl thiohydroxamates, which were reacted directly with thiophenol in refluxing toluene to give 32 (ent-29) cleanly in 82% yield. Double-bond introduction by selenenylation/oxidation as recently described, ${ }^{3 \mathrm{~d}}$ followed by nitrogen deprotection, gives (-)-anatoxin (33) in 30% overall yield.

Alternative Routes to (+)-Anatoxin (30). Alternatives to the reductive removal of the acetyl side chain of 11 via the thioketal 26 are shown in Scheme II. We sought the exploit the functionality at C-5 by converting the acetyl group of 11 into a group suitable for introduction of a C-4-C-5 double bond. Transition metal catalyzed dou-ble-bond migration, ${ }^{7}$ one-carbon side-chain extension and nitrogen deprotection would then lead to (+)-anatoxin (30). Our first efforts were directed toward the elimination of a hydroxyl group (or derivative), accessible by a BaeyerVilliger oxidation of $11 .{ }^{3 \mathrm{~d}}$ Thus 11a was treated with trifluoroperacetic acid under buffered conditions followed by hydrolysis to give alcohol 23 in 58% yield. Alternatively, we found that conversion of 11 to keto esters 13 (as described above) followed by sodium borohydride reduction, while necessitating one more step, gave substantially higher yields ($>80 \%$ overall).

The alcohols 23 were resistant to elimination when treated with $\mathrm{POCl}_{3}{ }^{8}$ or $\mathrm{SOCl}_{2}{ }^{9}$ in pyridine, the major products being the chlorides 24 a , which did not undergo dehydrohalogenation when treated with DBU or KOtBu. Similarly, the olefin could not be generated from the tosylates or triflates, dehydration with alumina, ${ }^{10}$ pyrolysis of the xanthates, ${ }^{11}$ from the o-nitrophenyl selenides, ${ }^{12}$ or via the Burgess reagent. ${ }^{13}$

The mixture of diastereomeric alcohols 23 could be converted to the iodo ester 24 b with $\mathrm{I}_{2} /(\mathrm{Ph})_{3} \mathrm{P}^{14}$ in 82% yield. Elimination did occur with t-BuOK, but formation of the corresponding tert-butyl ester was a problem. To circumvent this problem the ester was first hydrolyzed to iodo acid then dehydrohalogenation was effected with t-BuOK in dimethylacetamide, affording a mixture of unsaturated acids 17 and $19(\mathrm{R}=\mathrm{OH})$.

A more direct route to these olefins might be through tosylhydrazone elimination, and for this purpose keto es-

[^2]ters $13 \alpha, \beta$ were separately converted to crystalline tosylhydrazones $14 \alpha, \beta$ in quantitative yield. Base-induced tosylhydrazone elimination ${ }^{15 a, b}$ has been applied to compounds possessing base (or nucleophile) sensitive groups only rarely. ${ }^{15 \mathrm{c}, \mathrm{d}}$ Thus 14β was treated with excess LiH in refluxing toluene to give alkene 15β in 40% yield. Surprisingly, when epimeric 14α was treated in the same way, a mixture (2/1) of 15α and a byproduct to which we have assigned structure 16 was isolated. Cyclopropane 16 would arise from $\mathrm{C}-3-\mathrm{H}$ bond insertion of a carbene generated from decomposition of tosylhydrazone 14α. ${ }^{15 b, c, e}$ Why cyclopropane formation results only from the α-ester is not clear. The use of other bases for this elimination reaction led to a large variety of products.

The route to $(+)$-anatoxin (30) through the olefins would still be synthetically useful if the double bond could be isomerized into the C-2-C-3 position. We first tried isomerizing the double bond of methyl esters 15 by reaction with $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{7 \mathrm{~b}, \mathrm{~d}-\mathrm{h}}$ in a variety of solvents. A $1 / 1$ mixture of the desired α, β-unsaturated ester 20 and its β, γ-isomer $19\left(\mathrm{R}=\mathrm{OCH}_{3}\right)$ resulted; this apparently represents an equilibrium ratio as it did not change on treatment with base. Similarly, γ, δ-unsaturated acids 17 failed to isomerize and were recovered unchanged after treatment with $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.

Finally, carboxylic acids 17 and $19(\mathrm{R}=\mathrm{OH})$ were converted to methyl ketones 18 and $19\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ via the corresponding acid chlorides followed by addition to excess lithium dimethylcuprate. ${ }^{5}$
When these ketones were subjected to the typical $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$-catalyzed isomerization conditions, an equal distribution of all three ketones $18,19\left(\mathrm{R}=\mathrm{CH}_{3}\right)$, and 22 was obtained. Attempted base-induced isomerization did not enhance the proportion of the conjugated isomer 22, nor did stoichiometric $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (up to $150 \mathrm{~mol} \%$) alter the product distribution. While these olefins do not represent an efficient path to anatoxin, they may be of interest in themselves as double-bond positional analogues.

Summary

An enantiodivergent synthesis of natural (+)- and unnatural (-)-anatoxin (30 and 33) has been accomplished in excellent yield. This now allows the highly potent nicotinic agonist (+)-anatoxin to be prepared from inexpensive L-glutamic acid by a route easily amenable to scale up. While mixtures of stereoisomers are formed at several points, all reactions can be carried out on the mixtures and all diastereomers funnel into a single product, $\mathbf{3 0}$ or 33.
The beneficial effect of side-chain branching in the iminium ion cyclization of 9 to 10 to form the azabicyclo[4.2.1]nonane ring system allows entry into functionalized ring derivatives of anatoxin not accessible by any other synthetic routes.

Experimental Section

General Methods. Reactions were conducted under a dry nitrogen atmosphere except when noted otherwise. Solvents were freshly distilled as follows: tetrahydrofuran (THF) from sodium/benzophenone; methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, 1,2 -dichloroethane ($1,2-\mathrm{DCE}$), toluene, and $\mathrm{CH}_{3} \mathrm{CN}$ from $\mathrm{CaH}_{2} ; \mathrm{CH}_{3} \mathrm{OH}$ from $\mathrm{Mg}\left(\mathrm{OCH}_{3}\right)_{2} ; \mathrm{N}$-methylpiperidine from sodium; pyridine and $\mathrm{Et}_{3} \mathrm{~N}$ were distilled from CaH_{2} and stored over KOH pellets. Lowpressure chromatography (LPC) was carried out using columns packed with EM Reagents silica gel 60 ($0.040-0.063-\mathrm{mm}$ particle
(15) (a) Adlington, R. M.; Barrett, A. G. M. Acc. Chem. Res. 1983, 16, 55. (b) Shapiro, R. H. Org. React. (N.Y.) 1975, 23, 405. (c) Caglioti, L.; Grasselli, P.; Selva, A. Gazz. Chim. Ital. 1964, 94, 537. (d) Bunnell, C. A.; Fuchs, P. L. J. Am. Chem. Soc. 1977, 99, 5185. (e) Biellmann, J.-F.; Pete, J.-P. Bull. Soc. Chim. Fr. 1967, 675.
size, $230-400$ mesh). Column chromatography was carried out using EM Reagent silica gel 60 ($0.063-0.200-\mathrm{mm}$ particle size, 70-230 mesh). Melting points (Büchi apparatus, open capillary) are uncorrected. NMR spectra were recorded in CDCl_{3} or in $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}$. Chemical shifts are reported in parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si}\left({ }^{1} \mathrm{H}\right)$ or relative to CDCl_{3} at $77.0 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$. Significant ${ }^{1} \mathrm{H}$ NMR data are tabulated in order: multiplicity (s, singlet; d, doublet; t, triplet; dist, distorted; br, broad), number of protons, coupling constant(s) in hertz (Hz), assignment. In cases where DEPT experiments were carried out with ${ }^{13} \mathrm{C}$ NMR acquisitions, the carbon multiplicities are listed as (0) quaternary; (1) methine; (2) methylene; (3) methyl. Both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of many of the N - t-BOC-protected intermediates are complicated by doubling up of peaks due to the presence of carbamate rotamers.

Methyl (土)-5-(2-Methyl-1,3-dioxolan-2-yl)-2-hydroxypentanoate (3). Potassium ($19.00 \mathrm{~g}, 0.486 \mathrm{mmol}$) was added, in small portions, to a suspension of anhydrous $\mathrm{MgCl}_{2}(23.40 \mathrm{~g}, 0.244$ mol) in THF (350 mL). The resulting suspension was refluxed for 90 min and then stirred at $0^{\circ} \mathrm{C}$ for an hour. A solution of bromo ketal $^{3 \mathrm{a}}(1,42.54 \mathrm{~g}, 0.203 \mathrm{~mol})$ in THF $(100 \mathrm{~mL})$ was added at a rate of $2.1 \mathrm{~mL} / \mathrm{min}$. After the addition was completed, the mixture was stirred for 75 min at $0^{\circ} \mathrm{C}$ and then transferred via Teflon cannula into a cold ($-50^{\circ} \mathrm{C}$) solution of dimethyl oxalate ($34.22 \mathrm{~g}, 0.290 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(800 \mathrm{~mL}$) over a $20-\mathrm{min}$ period. The resulting suspension was stirred for an additional 90 min while the temperature rose to $0^{\circ} \mathrm{C}$, and then it was transferred via Teflon cannula into a $0.5 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}$ solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic solution was washed with saturated NaHCO_{3} and brine (500 mL each), back washing the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The combined organic extracts were dried, filtered, and evaporated to give α-keto ester 2 as a yellow oil, which was dissolved in deoxygenated EtOAc (230 mL) and $\mathrm{Et}_{3} \mathrm{~N}(7 \mathrm{~mL}), 5 \% \mathrm{Pt} / \mathrm{C}(4.32$ g) was added, the resulting suspension was hydrogenated at 50 psig overnight (Parr shaker), the catalyst was filtered off, the filtrate was evaporated, and the residue was purified by column chromatography ($1 / 4 \mathrm{EtOAc} /$ hexanes containing $0.2 \% \mathrm{Et}_{3} \mathrm{~N}$) to give 3 ($26.55 \mathrm{~g}, 60 \%$ yield) as a clear oil: IR (film) 3740 (br), 2960 (s), 1740 (s), $1440(\mathrm{~m}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.4-1.95$ (m, 6 H), 2.80 (br s, $1 \mathrm{H}, \mathrm{OH}$), 3.77 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.90 ($\mathrm{m}, 4 \mathrm{H}$), 4.15 (m, $1 \mathrm{H}, \mathrm{H}-2$); ${ }^{13} \mathrm{C}$ NMR $\delta 19.40,23.72,34.41,38.65,52.44$, $64.58,70.36,109.84,175.60$.
(2S)-1-Benzyl-5-[4-(2-methyl-1,3-dioxolan-2-yl)-1-(methoxycarbonyl)butylidene]proline tert-Butyl Ester (6). A solution of hydroxy ester $3(21.79 \mathrm{~g}, 100 \mathrm{mmol})$ and 2,6 -di-tert-butyl-4-methylpyridine ($26.65 \mathrm{~g}, 130 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ was cooled to $-15^{\circ} \mathrm{C}$, and trifluoromethanesulfonic anhydride ($\mathrm{Tf}_{2} \mathrm{O}$) ($32.40 \mathrm{~g}, 19.34 \mathrm{~mL}, 115 \mathrm{mmol}$) was added at $1.0 \mathrm{~mL} / \mathrm{min}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 4 h , additional 2,6 -di-tert-butyl-4-methylpyridine ($8.20 \mathrm{~g}, 40.0 \mathrm{mmol}$) and $\mathrm{Tf}_{2} \mathrm{O}(5.64 \mathrm{~g}, 3.36$ $\mathrm{mL}, 20 \mathrm{mmol}$) were then added, and stirring was continued at $0^{\circ} \mathrm{C}$ for an hour. Cold hexanes (250 mL) were added, the resulting suspension was filtered, the filtrate was evaporated (without heating), the residue was triturated with hexanes (100 mL) and filtered again, and the filtrate was evaporated. The residue, triflate 4 , was dried under vacuum ($0.1 \mathrm{mmHg}, 1 \mathrm{~h}$), cooled to $0^{\circ} \mathrm{C}$, and dissolved in $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$. Thiolactam $5^{3 \mathrm{a}}(22.34 \mathrm{~g}, 76.77 \mathrm{mmol})$ was added, the solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature (13 h), and then cooled to $-7^{\circ} \mathrm{C}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400$ mL) was added, followed by $4-\AA$ molecular sieves and $\mathrm{Ph}_{3} \mathrm{P}$ (28.82 $\mathrm{g}, 110 \mathrm{mmol}$). The resulting suspension was stirred at $-5^{\circ} \mathrm{C}$ for $75 \mathrm{~min}, N$-methylpiperidine ($11.39 \mathrm{~g}, 13.95 \mathrm{~mL}, 115 \mathrm{mmol}$) was then added, and stirring was continued at -5 to $-2^{\circ} \mathrm{C}$ for 22 h . The solution was washed with 1 M aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}(2 \times 200$ mL) and saturated $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$, the combined aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, and the combined organic phase was dried, filtered, and evaporated. The residue was purified by LPC (EtOAc/hexanes, 3/17) to give 6 (as a $4 / 1$ mixture of E / Z isomers, $24.66 \mathrm{~g}, 70 \%$ yield) as a clear oil: ${ }^{1} \mathrm{H}$ NMR $\delta 1.25$ and 1.30 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.42 and 1.45 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{BuO}$), $1.5-2.4(\mathrm{~m}, 7 \mathrm{H}), 2.72$ and $3.15(\mathrm{~m}, 2 \mathrm{H}), 3.58$ and $3.65(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}$), 3.85 (m, 5 H), 4.26 and 4.33 (d, $J=16.4,1 \mathrm{H}$, benzylic), 4.65 and 4.87 (d, $J=16.4,1 \mathrm{H}$, benzylic), 7.25 ($\mathrm{m}, 5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 23.73,24.92,25.62,26.72,27.49,27.88,31.51,32.08,33.82,38.69$, $38.81,38.88,50.43,50.55,52.51,53.99,57.83,64.29,64.43,64.50$,
$65.86,66.16,81.46,81.59,94.52,96.29,109.88,110.08,126.55,126.68$, $127.21,127.26,128.14,128.26,128.29,128.64,136.89,137.67,158.61$, $161.59,168.31,170.77,171.26,171.58,192.25$; IR (film) 2995 (m), $2960(\mathrm{~m}), 1740(\mathrm{~s}), 1695(\mathrm{~s}), 1580$ (s) cm^{-1}. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{NO}_{6}$: C, $67.9 ; \mathrm{H}, 8.1 ; \mathrm{N}, 3.0$. Found: $\mathrm{C}, 67.6 ; \mathrm{H}, 8.1 ; \mathrm{N}$, 2.8 .
(2S,5R)-1-Benzyl-5-[1-(methoxycarbonyl)-4-(2-methyl-1,3-dioxolan-2-yl)butyl]proline tert-Butyl Ester (7). To a solution of vinylogous carbamate $6(3.87 \mathrm{~g}, 8.43 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}$ (40 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}$ (580 mg), and the resulting suspension was hydrogenated at 50 psig for 16 h . The catalyst was filtered off, the filtrate was evaporated, the residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$, and calcined $\mathrm{K}_{2} \mathrm{CO}_{3}(650 \mathrm{mg}, 4.71 \mathrm{mmol})$ was added, followed by benzyl bromide ($504 \mathrm{mg}, 0.35 \mathrm{~mL}, 3.0 \mathrm{mmol}$). The resulting suspension was stirred at room temperature overnight, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added, the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, and the organic extracts were dried, filtered, and evaporated. Purification of the residue by column chromatography (EtOAc/hexanes, 1/4) gave 7 as a $4 / 1$ mixture of epimers at C-6; $3.62 \mathrm{~g}, 93 \%$ yield: ${ }^{1} \mathrm{H}$ NMR $\delta 1.28$ (major), 1.34 (minor) ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{BuO}$), $1.20-1.95$ (m, 10 H), 2.46 (minor, m, $1 \mathrm{H}, \mathrm{H}-6$), 2.66 (major, $\mathrm{q}, J=7.0,1 \mathrm{H}, \mathrm{H}-6$), 3.04 (major, $\mathrm{q}, J=5.9,1 \mathrm{H}$, $\mathrm{H}-5$), 3.22 (major, m, $1 \mathrm{H}, \mathrm{H}-2$), 3.22 (minor, m, $2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-5$), 3.67 and $4.00(\mathrm{~d}, J=14.0)$ and $3.70(\mathrm{~s})(2 \mathrm{H}$, benzylic), $3.90(\mathrm{~m}$, 4 H), 7.28 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR major $\delta 22.38,23.60,27.20,27.71$, $28.58,29.91,38.87,49.41,51.10,59.04,64.42,66.64,67.01,79.58$, $109.70,126.82,127.89,129.25,138.46,173.36,174.95$; minor $\delta 22.45$, $23.60,26.72,27.71,28.72,29.91,38.87,49.80,51.18,59.28,64.42$, $66.87,67.34,79.87,109.75,126.72,127.89,128.79,139.12,173.45$, 175.34; IR (film) 2980 (s), 2940 (s), 2880 (s), 1735 (s) cm^{-1}. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{6}$: $\mathrm{C}, 67.6 ; \mathrm{H}, 8.5 ; \mathrm{N}, 3.0$. Found: $\mathrm{C}, 67.6$; H, 8.6; N, 3.2.
(2S,5R,6S)- and ($2 S, 5 R, 6 R$)-1-Benzyl-5-(1-(methoxy-carbonyl)-5-oxohex-1-yl)proline (8α and 8β). A solution of ester ketal 7 ($3.62 \mathrm{~g}, 7.85 \mathrm{mmol}$) in $i-\mathrm{PrOH}(25 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, and glacial acetic acid (5 mL) was stirred at $100^{\circ} \mathrm{C}$ for 29 h , cooled, poured into 1.5 M aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}(150 \mathrm{~mL})$, and extracted with $\mathrm{CHCl}_{3}(3 \times 150 \mathrm{~mL})$. The combined organic phase was dried, filtered, and evaporated. The residue was purified by LPC (i $\mathrm{PrOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 / 19$ to $1 / 3$) to give pure 8β (less polar, 561 mg , 20% yield) and 8α (more polar, $2.246 \mathrm{~g}, 69 \%$ yield) as clear oils.
$8 \beta:{ }^{1} \mathrm{H}$ NMR $\delta 1.4-2.1(\mathrm{~m}, 8 \mathrm{H}), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.45(\mathrm{t}, J$ $=7.0,2 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.31(\mathrm{q}, J=6.9,1 \mathrm{H}, \mathrm{H}-5), 3.57$ ($\mathrm{t}, J=6.4,1 \mathrm{H}, \mathrm{H}-6$) , $3.63(\mathrm{~d}, J=13.0,1 \mathrm{H}$, benzylic), $3.80(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.97 (d, $J=13.0,1 \mathrm{H}$, benzylic), $7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.22,28.29,29.12,29.61,42.76,50.77,51.72,59.68,66.37$, 67.56, 77.20, 127.93, 128.57, 129.14, 135.62, 173.76, 174.39, 207.88; IR (film) 3400 (br) 2950 (m), 1715 (s), 1630 (w), 1450 (m), 1360 (m) cm^{-1}.
$8 \alpha:{ }^{1} \mathrm{H}$ NMR $\delta 1.30-2.05(\mathrm{~m}, 8 \mathrm{H}), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.43(\mathrm{t}$, $\left.J=6.9,2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 3.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.56$ (dd, $J=9.0,3.8,1 \mathrm{H}, \mathrm{H}-2$), 3.69 (d, $J=12.7,1 \mathrm{H}$, benzylic), 7.33 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR $\delta 21.75,26.42,28.53,29.04,29.84,42.97,46.98$, $52.04,57.67,65.81,67.52,128.36,128.90,126.55,135.63,173.70$, 174.78, 208.09; IR (film) 3400 (br), 2950 (m), 1715 (s), 1630 (w), $1450(\mathrm{~m}), 1360(\mathrm{~m}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{5}: \mathrm{C}, 66.4$; H, 7.5; N, 3.9. Found: C, 66.2; H, 7.5; N, 3.8.
($1 R, 2 R, 5 R$)- and ($1 R, 2 R, 5 S$)-5-Acetyl-9-benzyl-2-(meth-oxycarbonyl)-9-azabicyclo[4.2.1]nonane (10c and 10d). A solution of keto acid $8 \beta(979 \mathrm{mg}, 2.712 \mathrm{mmol})$ in 1,2-DCE $(20 \mathrm{~mL})$ was added to a cold $\left(-15^{\circ} \mathrm{C}\right)$ solution of oxalyl chloride (freshly distilled under $\mathrm{N}_{2}, 482 \mathrm{mg}, 0.33 \mathrm{~mL}, 3.80 \mathrm{mmol}$) in 1,2-DCE (65 mL) at $0.24 \mathrm{~mL} / \mathrm{min}$. After the addition was completed, the bright yellow solution was stirred for $3 \mathrm{~h}\left(-11^{\circ} \mathrm{C}\right.$ to $\left.3^{\circ} \mathrm{C}\right)$, toluene (65 mL) was added, and the solution was immersed in a preheated bath ($60^{\circ} \mathrm{C}$) and stirred overnight in an Ar atmosphere. The mixture was allowed to cool and then washed with saturated NaHCO_{3}. The aqueous washings were back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (two times), and the combined organic phase was washed with brine, dried, filtered, and evaporated. The residue was purified by chromatography ($\mathrm{EtOAc} /$ hexanes, $3 / 7$) to give a mixture of 10 c and 10 d ($1 / 1$ by ${ }^{1} \mathrm{H}$ NMR, $779 \mathrm{mg}, 91 \%$ yield) as a clear oil: ${ }^{1} \mathrm{H}$ NMR $\delta 1.50-2.05(\mathrm{~m}, 6 \mathrm{H}), 1.90$ and $2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.29$ (dd, $J=11.3,5.0,1 \mathrm{H}$), $2.38(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dt}, J=11.9,3.7,1$ $\mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.60$ and $3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right)$, 3.70 (br s, 1 H), 3.74 and 3.85 (s, 2 H , benzylic), 7.32 (m, 5 H);
${ }^{13} \mathrm{C}$ NMR $\delta 23.33,24.38,24.41,24.78,25.68,26.30,27.05,27.28$, 29.03, 33.89, 49.05, 50.38, 51.43, 57.30, 57.56, 60.95, 61.71, 62.50, $62.94,63.69,66.70,126.94,126.99,128.00,128.19,128.31,128.55$, $139.98,140.34,174.48,174.87,210.03,210.52$; IR (film) 3030 (w), $2960(\mathrm{~s}), 2880(\mathrm{~m}), 1730(\mathrm{~s}), 1705(\mathrm{~s}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{C}, 72.3 ; \mathrm{H}, 8.0 ; \mathrm{N}, 4.4$. Found: C, 72.2; H, 7.8; N , 4.4.
($1 R, 2 S, 5 S$)- and ($1 R, 2 S, 5 R$)-5-acetyl-9-benzyl-2-(meth-oxycarbonyl)-9-azabicyclo[4.2.1]nonane (10 a and 10 b) were prepared from 8α as described for $10 \mathrm{c}, \mathrm{d}$. The crude reaction products were separated by LPC (EtOAc/hexanes, 3/17) to give 10a (less polar, 68% yield) and 10 b (more polar, 23% yield) as clear oils.

10a: ${ }^{1} \mathrm{H}$ NMR $\delta 1.5-2.5\left(\mathrm{~m}, 9 \mathrm{H}\right.$), 1.98 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 2.73 (dt, $J=11.2,3.5,1 \mathrm{H}, \mathrm{H}-5$), 3.49 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $3.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6$), 3.71 (br d, $J=9.2,1 \mathrm{H}, \mathrm{H}-1$), 3.77 (d, $J=13.0,1 \mathrm{H}$, benzylic), 3.79 (d, $J=13.0,1 \mathrm{H}$, benzylic), 7.35 ($\mathrm{m}, 5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 23.34$, $24.04,26.03,28.98,33.71,51.47,52.60,58.77,60.46,64.28,64.38$, $126.81,128.07,128.51,140.40,175.72,210.26$; IR (film) 3030 (w), 2960 (s), $2880(\mathrm{~m}), 1730(\mathrm{~s}), 1705(\mathrm{~s}) \mathrm{cm}^{-1}$

10b: ${ }^{1} \mathrm{H}$ NMR δ 1.55-2.30 (m, 10 H), $1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.45$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.52 (d, $J=7.0,1 \mathrm{H}, \mathrm{H}-1$), 3.65 (s, 2 H , benzylic), 3.85 (br d, $J=8.0,1 \mathrm{H}, \mathrm{H}-5$), $7.26(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 24.42$ (2 C), 26.86, 29.18, 32.43, 49.50, 51.38, 60.89, 62.11, 63.69, 65.82, 126.94, 128.11, 129.19, 140.61, 174.58, 210.86; IR (film) 3030 (w), 2960 (s), $2880(\mathrm{~m}), 1730(\mathrm{~s}), 1705$ (s) cm^{-1}. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{C}, 72.3 ; \mathrm{H}, 8.0 ; \mathrm{N}, 4.4$. Found: C, $72.2 ; \mathrm{H}, 7.8 ; \mathrm{N}$, 4.4.
($1 R, 2 R, 5 R$)- and ($1 R, 2 R, 5 S$)-5-Acetyl-9-(tert-butoxy-carbonyl)-2-(methoxycarbonyl)-9-azabicyclo[4.2.1]nonane (11c and 11d). Di-tert-butyl dicarbonate ($1.107 \mathrm{~g}, 5.08 \mathrm{mmol}$) was added to a solution of a mixture of 10 c and $10 \mathrm{~d}(640 \mathrm{mg}, 2.03$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$ followed by $10 \% \mathrm{Pd} / \mathrm{C}(130 \mathrm{mg})$. The resulting suspension was hydrogenated at 50 psig for 22 h and then filtered, the residue was thoroughly washed with $\mathrm{CH}_{3} \mathrm{OH}$, the combined filtrates were evaporated, and the residue was purified by LPC (EtOAc/hexanes, 1/4) to give pure 11d (less polar, $223 \mathrm{mg}, 34 \%$ yield) and 11 c (more polar, $424 \mathrm{mg}, 64 \%$ yield) as clear oils.
$11 \mathrm{c}:{ }^{1} \mathrm{H}$ NMR (two rotamers) $\delta 1.2-2.4$ (m, 9 H), 1.39 and 1.44 ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{BuO}$), 2.19 and $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.83$ and 2.99 (dt, $J=12.2,3.5,1 \mathrm{H}, \mathrm{H}-2$), 3.64 and 3.66 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.45 (br $\mathrm{d}, J=8.8,1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 23.51,23.97,24.22$, $24.56,24.87,27.42,28.07,28.34,33.69,35.05,46.63,47.71,51.56$, $51.70,55.32,55.69,57.55,60.93,61.38,79.78,80.51,152.91,153.21$, 173.59, 175.32, 207.77, 208.90; IR (film) 2970 (s), 2950 (s), 1725 (s), 1710 (s), 1685 (s), 1400 (s). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5}: \mathrm{C}$, 62.7; H, 8.4; N, 4.3. Found: C, 62.8; H, 8.4; N, 4.2 .

11d: ${ }^{1} \mathrm{H}$ NMR (two rotamers) $\delta 1.40$ and 1.41 (s, $9 \mathrm{H}, t-\mathrm{BuO}$), 1.4-1.6 (m, 4 H), 1.8-2.0 (m, 4 H), 2.05 and $2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.98(\mathbf{q}, J=6.0,1 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 3.56$ and $3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right)$, 4.40 and $4.48(\mathrm{~m}, 1 \mathrm{H}), 4.48$ and $4.58(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 22.56 , $22.73,23.77,25.29,26.04,26.53,27.35,28.25,28.90,28.98,46.25$, $47.52,51.33,51.42,54.86,56.31,56.33,56.54,56.58,79.63,79.74$, 152.54, 152.80, 173.60, 173.82, 208.33, 208.73; IR (film) 2970 (s), 2950 (s), 1725 (s), 1710 (s), 1685 (s), 1400 (s) cm^{-1}. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5}: \mathrm{C}, 62.7 ; \mathrm{H}, 8.4 ; \mathrm{N}, 4.3$. Found: C, $62.8 ; \mathrm{H}, 8.3$; $\mathrm{N}, 4.4$.
($1 R, 2 S, 5 S$)-5-Acetyl-9-(tert-butoxycarbonyl)-2-(meth-oxycarbonyl)- 9 -azabicyclo[4.2.1]nonane (11a) was prepared from 10a as described for 11c and 11d as a clear oil, in 98% yield: ${ }^{1} \mathrm{H}$ NMR (two rotamers) $\delta 1.40$ and $1.46(\mathrm{~s}, 9 \mathrm{H}, t$-BuO), 1.4-1.7 $(\mathrm{m}, 4 \mathrm{H}), 1.95(\mathrm{~m}, 3 \mathrm{H}), 2.14$ and $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-13\right), 2.35(\mathrm{~m}$, 2 H), 2.93 and 3.01 ($\mathrm{dt}, J=11.6,3.4,1 \mathrm{H}, \mathrm{H}-5$), 3.66 and 3.68 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.44 and $4.50(\mathrm{br} \mathrm{d}, J=9.0,1 \mathrm{H}), 4.60$ and $4.65(\mathrm{br}$ $\mathrm{d}, J=9.0,1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 22.59,22.80,22.98,23.74,25.03,28.16$, $28.39,29.00,29.14,33.56,34.89,51.60,51.93,53.03,54.54,56.37$, 56.44, 56.97, 153.20, 174.24, 209.10; IR (film) 2970 (s), 2950 (s), 1725 (s), 1710 (s), 1685 (s), 1400 (s). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5}$: C, 62.7; H, 8.4; N, 4.3. Found: C, 63.0; H, 8.4; N, 4.2.
($1 R, 2 S, 5 R$)-5-Acetyl-9-(tert-butoxycarbonyl)-5-(meth-oxycarbonyl)-9-azabicyclo[4.2.1]nonane (11b) was prepared from 10b as described for 11c and 11d as a clear oil, in 98% yield: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ (signals are broad due to the coalescence of rotamers) $\delta 1.2-2.45(\mathrm{~m}, 10 \mathrm{H}$), 1.38 ($\mathrm{br} \mathrm{s}, 9 \mathrm{H}, t$ - BuO), 2.35 (br $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 5{ }^{\circ} \mathrm{C}\right) \delta 23.39,24.08,28.07,28.21,51.63,56.80$, $56.83,57.86,80.05,153.58,174.09,208.26$; IR (film) 2970 (s), 2950 (s), 1725 (s), 1710 (s), 1685 (s), 1400 (s) cm^{-1}. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5}: \mathrm{C}, 62.7 ; \mathrm{H}, 8.4 ; \mathrm{N}, 4.3$. Found: $\mathrm{C}, 63.0 ; \mathrm{H}, 8.5 ; \mathrm{N}$, 4.5.
(1S,5RS,10Z)-9-(tert-Butoxycarbonyl)-2-((Z)-1-(tert-butyldimethylsiloxy)ethylidene)-5-(methoxycarbonyl)-9azabicyclo[4.2.1]nonane (12). A diastereomeric mixture of keto esters $11 \mathrm{a}-\mathrm{d}(2.85 \mathrm{~g}, 8.76 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{OH}(35 \mu \mathrm{~L}, 0.88 \mathrm{mmol}$, $10 \mathrm{~mol} \%$) in THF (14 mL) was added to a suspension of sodium hydride (48% dispersion in oil, washed $3 \times 10 \mathrm{~mL}$ with THF; 876 $\mathrm{mg}, 17.5 \mathrm{mmol}, 200 \mathrm{~mol} \%$) in THF (24 mL) at $-15^{\circ} \mathrm{C}$. After the dark yellow suspension was stirred at $-15^{\circ} \mathrm{C}$ to $-12^{\circ} \mathrm{C}$ for 23 h , it was quenched with a centrifuged solution of TBDMSCl $(2.64 \mathrm{~g}, 17.51 \mathrm{mmol}, 200 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{~N}(2.04 \mathrm{~mL}, 14.62 \mathrm{mmol}$, $167 \mathrm{~mol} \%$) in THF (7 mL). The mixture was stirred overnight at $0^{\circ} \mathrm{C}$, poured into cold ($4{ }^{\circ} \mathrm{C}$) $1 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}(75 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 75 \mathrm{~mL})$. The combined organic phase was washed with brine (75 mL), dried, filtered, and evaporated to a yellow oil (4.4 g), which was purified by column chromatography (EtOAc/hexanes, 1/9) to give the thermodynamic enol ether 12 ($3.64 \mathrm{~g}, 95 \%$) as a clear, colorless oil: TLC (EtOAc/ hexanes, 1/3) $R_{f} 0.49$; IR (film) 2960 (s), 2930 (s), 1735 (s), 1690 (s), 1665 (s), 1400 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (two rotamers, 2/1) $\delta 0.10$, $0.11,0.13\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.89,0.90$ ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{BuSi}$), $1.39,1.45$ (s, $9 \mathrm{H}, t-\mathrm{BuO}$), $1.4-2.2$ (m, 7 H), 1.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}-11$), 2.30 (dd, $1 \mathrm{H}, J=14.8,6.9, \mathrm{H}-3$), 2.84, 3.01 (dt, $1 \mathrm{H}, J=8.5,3.8, \mathrm{H}-5$), 3.60 , 3.62 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.47, 4.57 (m, 1 H), 4.81, 4.88 (d, $1 \mathrm{H}, J=$ 8.0); ${ }^{13} \mathrm{C}$ NMR (two rotamers, 2/1) $\delta-3.85,-3.63,-3.36,-3.22$, $18.00,18.80,18.92,23.04,23.77,25.61,25.73,26.20,26.44,28.36$, $28.42,28.50,28.55,32.71,33.04,46.04,47.27,51.42,51.57,56.19$, $56.61,57.51,57.73,79.07,79.13,121.37,122.07,140.42,140.97$, 152.89, 153.34, 173.98, 174.05. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NO}_{5} \mathrm{Si}: \mathrm{C}$, 62.8; H, 9.4; N, 3.2. Found: C, 62.7; H, 9.6; N, 3.1.
($1 S, 5 R$)- and ($1 S, 5 S$)-9-(tert-Butoxycarbonyl)-5-(meth-oxycarbonyl)-9-azabicyclo[4.2.1]nonan-2-one (13α and 13). Ozone ($1.8 \mathrm{~mL} / \mathrm{min}$) was passed through a solution of $12(1.10$ $\mathrm{g}, 2.51 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(90 \mathrm{~mL})$ and pyridine (1 mL) at $-78^{\circ} \mathrm{C}$ until the colorless solution turned gray, and then the solution was purged with O_{2} until the gray color disappeared and then with N_{2} for 5 min . Addition of $\mathrm{Ph}_{3} \mathrm{P}(1.314 \mathrm{~g}, 5.016 \mathrm{mmol})$ and stirring at $-78^{\circ} \mathrm{C}$ for 1 h and at room temperature for 30 min was followed by evaporation. The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with 5% aqueous HCl and saturated NaHCO_{3}. Drying, filtering, and evaporating afforded a residue, which was purified by LPC (EtOAc/hexanes, $17 / 83$ to $1 / 3$) to give 13α (less polar, 594 mg , 80%) and 13β (more polar, $77 \mathrm{mg}, 10 \%$; identical with the ketone obtained below by PCC oxidation of alcohol $23(2 \alpha, 5 \beta)$) as clear oils.

13 α : TLC (EtOAc/hexanes, 1/3) $R_{f} 0.21$; IR (film) 2990 (s), 1730 (s), 1695 (s), 1400 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (two rotamers, 2/1) δ $1.33,1.41$ (s, $9 \mathrm{H}, t-\mathrm{BuO}$), 1.6-2.4 (m, 8 H), 2.98, 3.15 (br d, 1 H , $J=12.5, \mathrm{H}-5), 3.58,3.60\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.17,4.26(\mathrm{~d}, 1 \mathrm{H}$, $J=10.2$), 4.57, 4.66 (br d, $1 \mathrm{H}, J=7.8$); ${ }^{13} \mathrm{C}$ NMR (two rotamers, $2 / 1$) $\delta 20.98,23.88,24.50,28.06,28.19,29.05,29.52,39.78,46.58$, $47.93,51.58,51.71,57.63,64.13,64.61,80.39,80.51,152.47,152.86$, 172.46, 172.57, 213.56, 213.89. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{5}$: C, 60.6 ; H, 7.8; N, 4.7. Found: C, 60.6; H, 7.9; N, 4.7.
($1 S, 5 R$)- and ($1 S, 5 S$)-2,2-(Ethylenedithio)-5-(methoxy-carbonyl)-9-azabicyclo[4.2.1]nonane ($25 \alpha, \beta$). Boron trifluoride etherate (0.75 mL) was added to a solution of keto esters $13 \alpha, \beta$ ($302 \mathrm{mg}, 1.02 \mathrm{mmol}$) and ethanedithiol (0.72 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL). After the reaction mixture was stirred at room temperature for 24 h it was diluted with $1 \mathrm{~N} \mathrm{NaOH}(15 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 8 \mathrm{~mL})$. The combined organic phase was dried, filtered, and evaporated to an oil (286 mg , after removal of excess ethanedithiol by high vacuum Kugelrohr distillation) that was purified by LPC (EtOAc/hexanes, 2/3) to give amines $25 \alpha, \beta$ ($1 / 3$, $205 \mathrm{mg}, 74 \%$ yield).
25 α : ${ }^{1} \mathrm{H}$ NMR (partial list) $\delta 2.85-3.05$ (m, $1 \mathrm{H}, \mathrm{H}-5$), 3.67 (s , 3 H), 3.92-4.04 (m, $2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-6$); ${ }^{13} \mathrm{C}$ NMR $\delta 24.71$ (2), 29.01 (2), 30.66 (2), 38.26 (2), 39.23 (2), 39.44 (2), 49.94 (1, C-5), 51.30 (3, C-11), 58.27 (1, C-6), 70.94 (1, C-1), 76.92 ($0, \mathrm{C}-2$), 174.45 (0 , $\mathrm{C}-10$).

25 $\boldsymbol{B}_{\text {: }}{ }^{1} \mathrm{H}$ NMR $\delta 1.57-2.35(\mathrm{~m}, 9 \mathrm{H}), 2.45-2.55(\mathrm{~m}, 1 \mathrm{H})$, $3.21-3.36$ (m, $4 \mathrm{H},-\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}-$), 3.68 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $3.73-3.85$
(m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\delta 26.76$ (2), 28.55 (2), 34.61 (2), 37.92 (2), 39.07 (2), 39.26 (2), 51.59 (3, C-11), 52.98 (1, C-5), 57.77 (1, C-6), 70.21 ($1, \mathrm{C}-1$), 76.92 ($0, \mathrm{C}-2$), 175.84 ($0, \mathrm{C}-10$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}_{2}$: C, 52.7; H, 7.0; N, 5.1. Found: C, $52.6 ; \mathrm{H}, 6.9 ; \mathrm{N}$, 4.9.
($1 S, 5 R$)- and (1S,5S)-9-(tert-Butoxycarbonyl)-2,2-(ethylenedithio)-5-(methoxycarbonyl)-9-azabicyclo[4.2.1]nonane ($26 \alpha, \beta$). Di-tert-butyl dicarbonate ($245 \mathrm{mg}, 1.12 \mathrm{mmol}$, $150 \mathrm{~mol} \%$) was added to a solution of secondary amines 25 (205 $\mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(3 \mathrm{~mL})$. After being stirred at room temperature for 1 h , the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) and washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}(15 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the combined organic phase was dried, filtered, and evaporated, and the residue (clear oil, 390 mg) was purified by column chromatography (EtOAc/hexanes, $1 / 9$) to give thioketals $26 \alpha, \beta, 272 \mathrm{mg}, 97 \%$ yield.

26 α : TLC (EtOAc/hexanes, 1/3) $R_{f} 0.37 ;{ }^{1} \mathrm{H}$ NMR $\delta 1.50$ (s, $9 \mathrm{H}, t-\mathrm{BuO}), 1.57-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.78-2.20(\mathrm{~m}, 7 \mathrm{H}), 2.25-2.37(\mathrm{~m}$, $1 \mathrm{H}), 3.05-3.40\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5\right.$ and $\left.-\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}-\right), 3.67(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}$), $4.50-4.78$ (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\delta 24.91$ (2), 26.94 (2), 28.43 (3, 3 C, C-16), 29.69 (2), 30.35 (2), 37.86 (2), 39.19 (2), 46.44 (1, C-5), 51.62 (3, C-11), 56.82 (1), 66.94 (1), 80.30 ($0, \mathrm{C}-15$), 153.54 (0, C-14), 174.23 (0, C-10), C-2 carbon not located.
26B: TLC (EtOAc/hexanes, 1/3) $R_{f} 0.29 ;{ }^{1} \mathrm{H}$ NMR $\delta 1.44$ (s, $9 \mathrm{H}, t-\mathrm{BuO}), 1.65-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.30(\mathrm{~m}$, $4 \mathrm{H}), 2.33-2.56(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.43\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}-\right), 3.71$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $4.45-4.85(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.95$ (2), 28.24 (3, 3 C, C-16), 29.22 (2), 34.84 (2), 38.04 (2), 38.71 (2), 39.41 (2), 51.66 (3, C-11), 52.44 (1, C-5), 57.80 (1), 66.40 (1), 75.81 (0, C-2), 79.92 (0, C-15), 153.96 (0, C-14), 174.02 (0, C-10). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S}_{2}$: C, 54.7; H, 7.3; N, 3.7. Found: $\mathrm{C}, 54.3 ; \mathrm{H}, 7.3$; N, 3.7.

Raney Nickel Desulfurization. ($1 R, 2 R$)- and ($1 R, 2 S$)-9-(tert-Butoxycarbonyl)-2-(methoxycarbonyl)-9-azabicyclo[4.2.1]nonane $(27 \alpha, \beta)$. A solution of thioketals $26(272 \mathrm{mg}$, 0.73 mmol) in $\mathrm{EtOH}(10 \mathrm{~mL})$ was added to a suspension of $\mathrm{W}-2$ Raney $\mathrm{Ni}^{\text {I6 }}(2.0 \mathrm{~g})$ in EtOH , heated at reflux for 30 min , cooled to room temperature, and filtered through a short plug of Celite. The catalyst was digested three times by suspending it in EtOH ($3 \times 10 \mathrm{~mL}$), heating at reflux for 5 min , and filtering. The combined filtrates were evaporated to an oil, which was purified by column chromatography ($1 / 4, \mathrm{EtOAc} /$ hexanes) to give $27 \alpha, \beta$ as a clear oil ($196 \mathrm{mg}, 95 \%$), identical (TLC, NMR) with the dihydro esters prepared previously. ${ }^{3 \mathrm{e}}$

Conversion of Dihydro Esters 27 to ($1 R$)-t-BOC-Dihydroanatoxin (29). Potassium hydroxide ($388 \mathrm{mg}, 6.92 \mathrm{mmol}$, $1000 \mathrm{~mol} \%$) in $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ was added to a solution of dihydro esters 27 ($196 \mathrm{mg}, 0.69 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(8 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature for 20 h and then evaporated to remove most of the methanol. The residue was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, the combined organic layer was washed with $1 \mathrm{~N} \mathrm{NaOH}(5 \mathrm{~mL})$ and chilled $\left(0^{\circ} \mathrm{C}\right)$, and the combined aqueous phase was acidified to pH 3.2 with $7 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ and then extracted with CHCl_{3} ($3 \times$ 8 mL), and the combined CHCl_{3} layers were dried, filtered, and evaporated to afford t-BOC-dihydroanatoxinic acid $28(181 \mathrm{mg}$, 98% yield). Oxalyl chloride ($148 \mu \mathrm{~L}, 1.69 \mathrm{mmol}, 250 \mathrm{~mol} \%$) was added dropwise to a solution of acids $28(181 \mathrm{mg}, 0.68 \mathrm{mmol})$ and catalytic DMF (1 drop) in benzene (2 mL), and the resulting solution was stirred for 90 min and then evaporated to dryness. The mixture of crude acid chlorides in THF (2 mL) was added dropwise to a $-78^{\circ} \mathrm{C}$ solution of $300 \mathrm{~mol} \%$ of $\mathrm{Me}_{2} \mathrm{CuLi}$ [prepared by addition of $2.28 \mathrm{M} \mathrm{CH}_{3} \mathrm{Li}$ in $\mathrm{Et}_{2} \mathrm{O}(1.78 \mathrm{~mL}, 4.07 \mathrm{mmol}, 600$ $\mathrm{mol} \%$) to a slurry of cuprous iodide (CuI, $387 \mathrm{mg}, 2.03 \mathrm{mmol}$, $300 \mathrm{~mol} \%$) in THF (3 mL) at $0^{\circ} \mathrm{C}$, stirring for 10 min , then cooling to $-78^{\circ} \mathrm{C}$, and using directly] in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$. After stirring at $-78^{\circ} \mathrm{C}$ for 15 min the reaction mixture was quenched by addition of methanol (2 mL) and allowed to warm to room temperature. It was poured into $1 \mathrm{~N} \mathrm{NaOH}(20 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$, the combined organic phase was dried, filtered, and evaporated, and the yellow oily residue (200 mg) was purified by column chromatography ($1 / 4 \mathrm{EtOAc} /$ hexanes) to give

[^3] Vol. 3, p 181.
pure (1R)-t-BOC-dihydroanatoxin ($29 \alpha, \beta, 156 \mathrm{mg}, 86 \%$ from acid 28), identical with material previously prepared. ${ }^{3 \mathrm{a}, \mathrm{d}}$
(+)-Anatoxin (33). Via the reported procedure, ${ }^{3 \mathrm{~d}}(1 R)-t$ -BOC-dihydroanatoxin (29) was converted to BOC-anatoxin (22) and then to (+)-anatoxin (30) in 84% overall yield.
($1 R, 2 R, 5 R$)- and ($1 R, 2 R, 5 S$)-5-Acetyl-9-(tert-butoxy-carbonyl)-2-carboxy-9-azabicyclo[4.2.1]nonane (31). Potassium hydroxide ($517 \mathrm{mg}, 9.22 \mathrm{mmol}, 1000 \mathrm{~mol} \%$) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to a solution of keto esters 11 c and $11 \mathrm{~d}(2 / 1,300 \mathrm{mg}$, 0.92 mmol) in $\mathrm{CH}_{3} \mathrm{OH}(15 \mathrm{~mL}$), and the mixture was stirred at room temperature for 3 h . Most of the methanol was evaporated, $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added, and the mixture was washed with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 10 \mathrm{~mL})$. The aqueous phase, cooled to $0^{\circ} \mathrm{C}$ and adjusted to pH 3.5 , was extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$, the combined organic phase was dried, filtered, and evaporated, and the residue $(300 \mathrm{mg})$ was purified by column chromatography ($1 / 1 \mathrm{Et}$ OAc/hexanes to $100 \% \mathrm{EtOAc}$) to give keto acids 31 ($270 \mathrm{mg}, 94 \%$ yield): mp $120-121^{\circ} \mathrm{C}$; IR (film) 3600-2700 (br s), 1680,1400 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.25-1.73$ (m, 5 H), 1.37 (major) and 1.46 (minor) ($\mathrm{s}, 9 \mathrm{H}, t-\mathrm{BuO}$), 1.82-2.40 (m, 6 H), 2.12 (minor) and 2.14 (major) ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}$), 2.52 (br d, $J=11.6$, minor, $\mathrm{H}-5 \beta$), 2.84 (br d, $J=12.1$, minor, $\mathrm{H}-2$), 3.07 (br d, $1 \mathrm{H}, J=10.7$, major, $\mathrm{H}-2$), 4.49 (dist d, $1 \mathrm{H}, J=8.8$), 4.57 (dist $\mathrm{t}, 1 \mathrm{H}, J=8.8$); ${ }^{13} \mathrm{C} \mathrm{NMR}$ (major isomer) $\delta 22.68$ (2), 22.75 (2), 24.77 (2), 27.96 (3, 3 C), 28.26 (3), 34.66 (2), 52.59 (1), 54.69 (1), 56.41 (1), 56.93 (1), 80.46 (0), 153.18 (0), $179.17(0), 209.31(0)$; (minor isomer) $\delta 23.11(2), 23.37(2)$, 26.67 (2), 28.93 (3), 29.07 (3, 3 C), 33.45 (2), 55.3 (1), 55.73 (1), 55.77 (1), 57.29 (1), $81.49(0), 154.77$ (0), 176.78 (0), 208.10 (0). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{5}: \mathrm{C}, 61.7 ; \mathrm{H}, 8.1 ; \mathrm{N}, 4.5$. Found: C , 61.8; H, 8.1; N, 4.5.
(1S)-t-BOC-Dihydroanatoxin (32). Keto acids 31 (55 mg , 0.18 mmol) in benzene (1 mL) containing DMF (1 drop) were treated with oxalyl chloride ($39 \mu \mathrm{~L}, 56 \mathrm{mg}, 0.44 \mathrm{mmol}, 250 \mathrm{~mol}$ $\%$) at room temperature for 3 h . The reaction mixture was evaporated to dryness, benzene (2 mL) was added, and the evaporation was repeated. The residual acid chloride was dissolved in toluene $(1 \mathrm{~mL})$ and added to a solution of 2 -mercapto- N hydroxypyridine ${ }^{6}(24.7 \mathrm{mg}, 0.19 \mathrm{mmol}, 110 \mathrm{~mol} \%)$ and pyridine (3 drops) in toluene (2 mL). The resulting yellow solution was stirred in the dark for 1 h at room temperature and then added at $0.17 \mathrm{~mL} / \mathrm{min}$ to a solution of thiophenol $(81.6 \mu \mathrm{~L}, 87.6 \mathrm{mg}, 0.79$ mmol, $450 \mathrm{~mol} \%$) in toluene (4 mL) at reflux. Reflux was continued for 45 min after addition was complete, the reaction mixture was cooled to room temperature and washed with 1 N $\mathrm{NaOH}(15 \mathrm{~mL})$, and the aqueous layer was extracted with benzene $(8 \mathrm{~mL})$. The combined organic phase was washed with brine (10 mL), dried, filtered, and evaporated to a pale oil (70 mg) that was purified by column chromatography ($1 / 9 \mathrm{EtOAc} /$ hexanes) to give (1S)-t-BOC-dihydroanatoxin (32, $39 \mathrm{mg}, 82 \%$ yield) as a mixture of epimers at $\mathrm{C}-2$.
(-)-Anatoxin (33). Via the previous procedure, ${ }^{3 \mathrm{~d}} 32$ was converted to (-)-anatoxin (33) ${ }^{3 \mathrm{a}}$ in 84% overall yield.
($1 S, 2 S, 5 S$)-9-(tert-Butoxycarbonyl)-2-hydroxy-5-(meth-oxycarbonyl)-9-azabicyclo[4.2.1]nonane (23, $2 \alpha, 5 \beta$): Baey-er-Villiger Oxidation/Hydrolysis Route. To a cold $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{H}_{2} \mathrm{O}_{2}(70 \%, 352 \mathrm{mg}, 7.237 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ was added $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(2.279 \mathrm{~g}, 1.53 \mathrm{~mL}, 10.8 \mathrm{mmol})$. The solution was stirred for 5 min , and then solid $\mathrm{Na}_{2} \mathrm{HPO}_{4}(3.082 \mathrm{~g}, 21.7 \mathrm{mmol})$ was added followed by a solution of $11 \mathrm{a}(784 \mathrm{mg}, 2.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The resulting suspension was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature overnight, poured into saturated NaHCO_{3}, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (three times). The organic extracts were dried, filtered, and evaporated to a clear oil, which was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ (1 drop), calcined $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($500 \mathrm{mg}, 3.6 \mathrm{mmol}$) was added, and the mixture was stirred at room temperature overnight, poured into 1.5 M aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (three times). The organic extracts were dried, filtered, and evaporated, and the residue was purified by column chromatography (EtOAc/hexanes, 1/1) to give pure $23(2 \alpha, 5 \beta)(418 \mathrm{mg}, 58 \%$ yield) as a white solid, identical with the more polar alcohol product from the reduction of keto ester 13β.
(1S,5S)-9-(tert-Butoxycarbonyl)-5-(methoxycarbonyl)-9-azabicyclo[4.2.1]nonan-2-one (13 β): By Oxidation of Alcohol 23 ($2 \alpha, 5 \beta$). Pyridinium chlorochromate ($244 \mathrm{mg}, 1.13 \mathrm{mmol}$) was added to a solution of $23(2 \alpha, 5 \beta)(232 \mathrm{mg}, 0.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The solution was stirred at room temperature for $19 \mathrm{~h}, \mathrm{Et}_{2} \mathrm{O}$ (10 mL) was added, the suspension was filtered through a pad of Celite and silica gel, the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$, and the combined filtrates were evaporated. The residue was purified by column chromatography (EtOAc/hexanes, 3/7) to give 13β ($212 \mathrm{mg}, 92 \%$ yield) as a clear oil: TLC (EtOAc/hexanes, $1 / 3$) $R_{f} 0.15$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.38(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{BuO}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H})$, 2.23 (m, 3 H), 2.60 (br s, 1 H), 3.42 (br t, $J=14.0,1 \mathrm{H}, \mathrm{H}-3$), 3.71 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.28 (br s, 1 H), 4.94 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR $\delta 20.60$, $28.15,28.34,29.20,38.37,46.96,52.04,58.16,65.12,80.53,152.85$, 173.73, 215.01; IR (film) 2990 (s), 1730 (s), 1695 (s), $1400(\mathrm{~s}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{5}: \mathrm{C}, 60.6 ; \mathrm{H}, 7.8 ; \mathrm{N}, 4.7$. Found: C , 60.7; H, 8.0; N, 5.1.
(1S,5S)-9-(tert-Butoxycarbonyl)-5-(methoxycarbonyl)-9-azabicyclo[4.2.1]nonan-2-one (4-Tolylsulfonyl)hydrazone (14α). (p-Tolylsulfonyl)hydrazine ($667 \mathrm{mg}, 3.51 \mathrm{mmol}$), pyridinium tosylate ($60 \mathrm{mg}, 0.24 \mathrm{mmol}$), and molecular sieves ($3 \AA$) were added to a solution of $13 \alpha(710 \mathrm{mg}, 2.39 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$. The resulting suspension was stirred at room temperature for 9 h , and then pyridine (1 mL) was added, followed by succinic anhydride ($717 \mathrm{mg}, 7.173 \mathrm{mmol}$) and DMAP (15 mg). After being stirred overnight, the reaction mixture was poured into saturated $\mathrm{NaHCO} \mathrm{O}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times)$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$, and brine, dried, filtered, and evaporated to give pure $14 \alpha(1.110 \mathrm{~g}, 100 \%$ yield): $\mathrm{mp} 152-155^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes); ${ }^{1} \mathrm{H}$ NMR (mixture of two rotamers and E / Z isomers) $\delta 1.05,1.17$ and 1.32 (s, $9 \mathrm{H}, t-\mathrm{BuO}$), 1.4-2.4 (m, 7 H), 2.28 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ar}$), 2.63-2.90 (m, 2 H), 3.54 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.3-4.5 (m, 2 H), $7.17(\mathrm{~m}, 3 \mathrm{H}$, aromatic +NH), 7.67 (m, 2 H , aromatic); ${ }^{33} \mathrm{C}$ NMR $\delta 21.10,21.69,23.15,23.27,23.56$, 24.07, 24.14, 25.31, 27.59, 27.72, 27.96, 28.32, 29.01, 30.84, 33.24, 46.08, 47.11, 47.15, 47.91, 51.52, 51.57, 51.66, 55.21, 57.42, 57.69, $57.75,61.17,80.13,80.55,80.93,127.42,127.66,129.14,129.21$, $135.23,135.33,135.39,143.56,143.68,152.47,152.97,162.87,164.60$, $165.33,172.90,173.08$; IR $\left(\mathrm{CDCl}_{3}\right) 3700(\mathrm{w}), 3040(\mathrm{~m}), 1735(\mathrm{~s})$, 1695 (s), 1410 (s) cm^{-1}. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$: C, 56.7 ; H, 6.7; N, 9.0. Found: C, 56.7 ; H, 6.7; N, 8.9.
($1 S, 5 R$)-9-(tert-Butoxycarbonyl)-5-(methoxycarbonyl)9 -azabicyclo[4.2.1]nonan-2-one (4-Tolylsulfonyl)hydrazone (14 β) was prepared from 13β in the same way as 14α above, in quantitative yield: $\mathrm{mp} 134-136{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR mixture of two rotamers and E / Z isomers) $\delta 1.14,1.25$ and 1.32 (s, $9 \mathrm{H}, t-\mathrm{BuO}$), 1.15-2.5 (m, 8 H), 2.40 and 2.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ar}$), 2.83 and 2.98 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-3$), 3.65 and 3.66 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.45-5.00 ($\mathrm{m}, 2 \mathrm{H}$), 7.27 ($\mathrm{m}, 2 \mathrm{H}$, aromatic), 7.58 and 8.82 (br s, $1 \mathrm{H}, \mathrm{NH}$), 7.82 (m, 2 H , aromatic); ${ }^{13} \mathrm{C}$ NMR δ 20.22, 20.62, 21.08, 21.14, 22.44, 23.37, 23.70, 27.10, 27.51, 27.67, 27.81, 27.89, 28.55, 28.76, 30.19, $30.96,31.25,33.87,46.50,47.01,51.41,51.70,54.58,55.61,57.47$, $57.71,58.03,60.11,60.31,61.66,79.72,80.22,81.07,127.48,127.69$, 127.86, 129.12, 129.58, 135.16, 135.43, 143.42, 152.59, 153.06, 153.79, 163.44, 164.63, 165.70, 165.76, 173.78, 174.10; IR (CHCl_{3}) 3700 (w), 3040 (m), 1735 (s), 1695 (s), 1410 (s) cm^{-1}. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 56.7 ; \mathrm{H}, 6.7$; $\mathrm{N}, 9.0$. Found: C, $56.8 ; \mathrm{H}, 6.8 ; \mathrm{N}$, 8.6.
($1 R, 2 R$)-9-(tert -Butoxycarbonyl)-2-(methoxy-carbonyl)-9-azabicyclo[4.2.1]non-4-ene (15 β). To a solution of $14 \beta(226 \mathrm{mg}, 0.486 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ was added LiH ($226 \mathrm{mg}, 28.25 \mathrm{mmol}$). The resulting suspension was immersed in a preheated oil bath ($120^{\circ} \mathrm{C}$), refluxed for 5 h , allowed to cool to room temperature, and slowly added to a cold $\left(0^{\circ} \mathrm{C}\right)$, vigorously stirred mixture of 1 M aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 1,50 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times)$. The combined organic extracts were dried, filtered, and evaporated, and the residue was column chromatographed to give pure 15β ($56 \mathrm{mg}, 41 \%$ yield) as a clear oil: ${ }^{1} \mathrm{H}$ NMR $\delta 1.42(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{BuO}), 1.4-2.8(\mathrm{~m}, 7 \mathrm{H}), 3.70(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 4.54 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1$), 4.71 (br s, $1 \mathrm{H}, \mathrm{H}-6$), 5.60 (m, 2 $\mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-5$); ${ }^{13} \mathrm{C}$ NMR $\delta 24.51,28.25,29.37,33.98,51.69,54.33$, $55.74,57.90,79.81,124.95,132.32,153.48,173.96$; IR (film) 2990 $(\mathrm{m}), 1740(\mathrm{~s}), 1700(\mathrm{~s}), 1420(\mathrm{~s}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 64.0; H, 8.3; N, 5.0. Found: C, 63.7; H, 8.2; N, 4.7.

In a similar experiment using NaH as the base and starting with hydrazone $14 \alpha, 15 \alpha$ was obtained in 40% yield along with 15β and 16.
15α : ${ }^{1} \mathrm{H}$ NMR (two rotamers) $\delta 1.41$ and $1.45(9 \mathrm{H}, \mathrm{s}, t-\mathrm{BuO})$, $1.6-2.6(\mathrm{~m}, 6 \mathrm{H}), 3.00$ and $3.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.64$ and $3.66(\mathrm{~s}$,
$3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $4.25-4.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-6), 5.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4)$, 5.96 (m, $1 \mathrm{H}, \mathrm{H}-5$); ${ }^{13} \mathrm{C}$ NMR $\delta 24.92,25.81,25.86,25.93,28.42$, $28.50,30.89,31.51,44.41,46.28,51.69,51.76,54.76,55.02,57.09$, $57.15,79.45,79.63,126.70,126.94,135.72,136.07,152.80,152.96$, 173.37, 174.11; IR (film) 2990 (m), 1740 (s), 1700 (s), $1420(\mathrm{~s}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}, 64.0 ; \mathrm{H}, 8.3 ; \mathrm{N}, 5.0$. Found: C, 63.7; H, 8.2; N, 4.7.
($1 S, 2 R, 5 R$)- and ($1 S, 2 S, 5 R$)-9-(tert-Butoxycarbonyl)-2-hydroxy-5-(methoxycarbonyl)-9-azabicyclo[4.2.1]nonane (23). Sodium borohydride ($98 \%, 38 \mathrm{mg}, 0.98 \mathrm{mmol}, 54 \mathrm{~mol} \%$) was added to a $-15^{\circ} \mathrm{C}$ solution of keto ester $13 \alpha(539 \mathrm{mg}, 1.81$ mmol) in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$. After 30 min , acetone (2 mL) was added, the cooling bath was removed, the mixture was allowed to come to room temperature, saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added, and most of the $\mathrm{CH}_{3} \mathrm{OH}$ was evaporated. The resulting aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the combined organic phase was washed with brine, dried, filtered, and evaporated, and the residue was purified by LPC ($1 / 3$ to $1 / 1$ EtOAc/hexanes) to give the less polar epimer ($1 S, 2 R, 5 R$)-23 (143 mg) followed by the more polar epimer ($1 S, 2 S, 5 R$)-23 (396 mg , 99% combined yield) as clear, foamy oils.
($1 \boldsymbol{S}, 2 \boldsymbol{R}, 5 R$)-23: TLC (EtOAc/hexanes, $1 / 1) R_{f} 0.38 ;[\alpha]^{23} \mathrm{D}$ $-57.9^{\circ}\left(c 0.9, \mathrm{CHCl}_{3}\right) ;$ IR (film) $3440,2930,1720,1660 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (two rotamers, 4/1) $\delta 1.24-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}$, t-BuO), 1.57-1.74 (m, 3 H), 1.85-2.18 (m, 3 H), 2.25-2.38 (m, 1 H), 2.65 ($\mathrm{br} \mathrm{d}, 0.2 \mathrm{H}, J=8.7, \mathrm{OH}$), 2.89 (dt, $0.8 \mathrm{H}, J=4.4,5.2$, $\mathrm{H}-5 \beta$), 3.06 (dt, $0.2 \mathrm{H}, J=4.9,5.1$, H-5 β), $3.62-3.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \alpha$), 3.67 (s, $0.6 \mathrm{H}, \mathrm{OCH}_{3}$), $3.69\left(\mathrm{~s}, 2.4 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $4.14(\mathrm{~d}, 0.8 \mathrm{H}, \mathrm{J}=$ $9.2, \mathrm{OH}$) 4.26 ($\mathrm{brd}, 0.2 \mathrm{H}, J=9.8, \mathrm{H}-1$), 4.38 (dd, $0.8 \mathrm{H}, J=2.7$, $10.9, \mathrm{H}-1$), 4.51 (dd, $0.8 \mathrm{H}, J=4.5,8.4, \mathrm{H}-6$), 4.68 (dd, $0.2 \mathrm{H}, \mathrm{H}-6$); ${ }^{13} \mathrm{C}$ NMR major rotamer $\delta 20.68$ (2), 25.63 (2), 28.32 (3 C, t-BuO), 28.86 (2), 32.42 (2), 48.41 (1, C-5), 51.67 (3, C-11), 57.66 (1, C-6 or C-1), 62.81 ($1, \mathrm{C}-1$ or $\mathrm{C}-6$), $77.85(1, \mathrm{C}-2), 80.53$ ($0, \mathrm{C}-13$), 156.00 ($0, \mathrm{C}-12$), 173.39 ($0, \mathrm{C}-10$); minor rotamer $\delta 20.48$ (2), 24.60 (2), 28.38 (3 C, t-BuO), 30.12 (2), 32.39 (2), 46.99 (1, C-5), 51.54 (3, $\mathrm{C}-11$), 57.34 (1, C-6 or C-1), 62.98 (1, C-1 or C-6), 78.09 (1, C-2), 80.95 ($0, \mathrm{C}-13$), 152.99 ($0, \mathrm{C}-11$), 173.56 ($0, \mathrm{C}-10$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{5}$: C, 60.2; H, 8.4; N, 4.7. Found: C, $60.0 ; \mathrm{H}, 8.7$; N, 4.8 .
(1S,2S,5R)-23: TLC (EtOAc/hexanes, 1/1) $R_{f} 0.31 ;[\alpha]^{23}{ }^{\mathrm{D}}$
 NMR (two rotamers, $5 / 4$) $\delta 1.40-1.92(\mathrm{~m}, 5 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}$, t-BuO), 2.02-2.25 (m, 3 H), 2.37-2.43, 2.87-2.96 (br s, $1 \mathrm{H}, \mathrm{OH}$), 3.14 (dt, $0.56 \mathrm{H}, J=4.0,6.4, \mathrm{H}-5 \beta), 3.29(0,0.44 \mathrm{H}, J=6.0,11.2$, $\mathrm{H}-5 \beta), 3.67,3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.98-4.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \beta), 4.22$ (dd, $0.44 \mathrm{H}, J=5.8,7.9, \mathrm{H}-1$), 4.32 (dd, $0.56 \mathrm{H}, J=5.2,8.2, \mathrm{H}-1$), 4.49 (ddd, $0.56 \mathrm{H}, J=3.0,6.6,9.4, \mathrm{H}-6$), 4.60 (ddd, $0.44 \mathrm{H}, J=$ $2.7,6.4,9.9, \mathrm{H}-6$); ${ }^{13} \mathrm{C}$ NMR major rotamer $\delta 21.22$ (2), 21.79 (2), 28.17 (2), 28.38 (3 C, t-BuO), 29.93 (2), 46.59 (1, C-5), 51.54 (3, C-11), 55.75 (1, C-6 or C-1), 60.02 ($1, \mathrm{C}-1$ or C-6), 70.26 (1, C-2), 79.82 ($0, \mathrm{C}-13$), 153.18 ($0, \mathrm{C}-12$), 174.43 ($0, \mathrm{C}-10$); minor rotamer $\delta 20.95$ (2), 22.59 (2), 27.01 (2), 28.38 (3 C, t - BuO), 30.74 (2), 45.71 (1, C-5), 51.49 (3, C-11), 55.75 (1, C-6 or C-1), 59.91 (1, C-1 or C-6), 71.19 (1, C-2), 79.55 ($0, \mathrm{C}-13$), 153.08 ($0, \mathrm{C}-12$), 174.18 ($0, \mathrm{C}-10$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{5}: \mathrm{C}, 60.2 ; \mathrm{H}, 8.4 ; \mathrm{N}, 4.7$. Found: C, 59.8; H, 8.5; N, 4.8 .
($1 S, 2 R, 5 S$)- and ($1 S, 2 S, 5 S$)-9-(tert -Butoxycarbonyl)-2-hydroxy-5-(methoxycarbonyl)-9-azabicyclo[4.2.1]nonane (23). The 5β-keto ester $13 \beta(378 \mathrm{mg})$ was reduced with NaBH_{4} $(27 \mathrm{mg})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ in the same manner as described above for 13α to give, after LPC ($1 / 4$ to $1 / 1 \mathrm{EtOAc} /$ hexanes), the hydroxy esters ($1 S, 2 R, 5 S$)-23 (161 mg) and ($1 S, 2 S, 5 S$)-23 (197 $\mathrm{mg}, 94 \%$ combined yield) as white solids.
($1 S, 2 R, 5 S$)-23: mp 75-76 ${ }^{\circ} \mathrm{C}$; TLC (EtOAc/hexanes, 1/1) R_{f} 0.29 ; $[\alpha]^{24} \mathrm{D}-44^{\circ}$ (c $0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3440,2960,1730$, $1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.4-1.6(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{BuO})$, $1.62-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.91-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.50(\mathrm{~m}, 2 \mathrm{H}), 3.72$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.78-3.88 (m, $1 \mathrm{H}, \mathrm{H}-2$), 4.31 (br d, $1 \mathrm{H}, J=4.5$, OH), 4.50 (br d, $1 \mathrm{H}, J=8.7, \mathrm{H}-1$), 4.62 (br d, $1 \mathrm{H}, J=9.1, \mathrm{H}-6$); ${ }^{13} \mathrm{C}$ NMR $\delta 19.97$ (2), 25.62 (2), 28.00 (3, 3 C, C-14), 29.48 (2), 34.00 (2), 51.56 (3, C-11), 52.73 (1), 56.80 (1), 61.41 (1), 73.80 (1, C-2), 80.77 ($0, \mathrm{C}-13$), 156.45 ($0, \mathrm{C}-12$), 174.23 (0, C-10). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{5}$: C, 60.2; H, 8.4; $\mathrm{N}, 4.7$. Found: $\mathrm{C}, 60.0 ; \mathrm{H}, 8.5$; $\mathrm{N}, 4.5$.
($1 \mathbf{S , 2 S , 5 S}$)-23: $\mathrm{mp} 105-106^{\circ} \mathrm{C}$; TLC (EtOAc/hexanes, $1 / 1$) $R_{f} 0.20 ;[\alpha]^{24}{ }_{\mathrm{D}}-24.1^{\circ}\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3450,2990,1735$,
$1685 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (two rotamers, 6/1) $\delta 1.24-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.40$, $1.45(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{BuO}), 1.66-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.82-2.08(\mathrm{~m}, 3 \mathrm{H})$, $2.32-2.50(\mathrm{~m}, 2 \mathrm{H}), 3.69,3.72$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.87-3.95, 3.98-4.05 (m, 1 H), 4.15-4.22, 4.30-4.38 (m, 1 H), 4.53, 4.68 (br d, $1 \mathrm{H}, J$ $=9.2$); ${ }^{13} \mathrm{C}$ NMR (major rotamer) $\delta 20.67$ (2), 21.94 (2), 28.11 (3, 3 C, C-14), 29.61 (2), 34.94 (2), 51.51 (3, C-11), 52.58 (1), 55.94 (1), 60.24 (1), 69.43 (1, C-2), 80.02 ($0, \mathrm{C}-13$), 153.49 ($0, \mathrm{C}-12$), 174.35 ($0, \mathrm{C}-10$); (minor rotamer, partial list) $\delta 21.69$ (2), 21.83 (2), 28.27 (3, 3 C), 51.75 (3, C-11), 56.03 (1), 60.13 (1), 71.03 (1), 79.5 ($0, \mathrm{C}-13$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{5}$: $\mathrm{C}, 60.2 ; \mathrm{H}, 8.4 ; \mathrm{N}, 4.7$. Found: C, $60.0 ; \mathrm{H}, 8.4 ; \mathrm{N}, 5.0$.
($1 S, 2 R, 5 R$)- and ($1 S, 2 R, 5 S$)-9-(tert -Butoxycarbonyl)-2-chloro-5-(methoxycarbonyl)-9-azabicyclo[4.2.1]nonane (24a). Phosphorus oxychloride ($0.22 \mathrm{~mL}, 2.32 \mathrm{mmol}, 500 \mathrm{~mol} \%$) was added to a $0^{\circ} \mathrm{C}$ solution of hydroxy ester ($1 S, 2 S, 5 R$)-23 (139 mg , 0.464 mmol) in pyridine (2 mL). The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 40 min and then at room temperature overnight. After cooling to $0^{\circ} \mathrm{C}$, ice (2 g) was added, and the mixture was poured into cold $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$. The combined organic phase was washed with saturated NaHCO_{3} (10 mL), dried, filtered, and evaporated to a yellow oil that was purified by column chromatography ($1 / 9$ to $1 / 4 \mathrm{EtOAc}$ /hexanes) to give pure chloride ($1 S, 2 R, 5 R$)-24a ($106 \mathrm{mg}, 72 \%$) as a clear oil: TLC (EtOAc/hexanes, $1 / 3$) $R_{f} 0.39 ;{ }^{1} \mathrm{H}$ NMR (two rotamers, $6 / 5$) $\delta 1.47$ (s, $9 \mathrm{H}, t-\mathrm{BuO}$), $1.60-1.90(\mathrm{~m}, 4 \mathrm{H}), 2.07-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.36$ (br d, $1 \mathrm{H}, J=17.6$), $2.77-2.88$ (m, $1 \mathrm{H}, \mathrm{H}-5 \beta$), $3.69,3.72$ ($\mathrm{s}, 3$ H, H-11), 4.09-4.17 (m, I H, H-2 α), 4.18-4.22, 4.33-4.37, 4.39-4.42, $4.53-4.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-6)$) ${ }^{13} \mathrm{C}$ NMR major rotamer $\delta 21.95$ (2), 22.34 (2), 26.49 (2), 28.35 (3, 3 C, C-14), 31.40 (2), 44.12 (1), 45.46 (1), 51.22 (1), 51.73 (3, C-11), 58.51 (1), 80.41 (0, C-13), 153.59 ($0, \mathrm{C}-12$), 173.35 ($0, \mathrm{C}-10$); minor rotamer $\delta 21.95$ (2), 22.11 (2), 26.97 (2), 28.35 (3, 3C, C-14), 31.40 (2), 44.65 (1), 47.09 (1), 49.47 (1), 51.73 (3, C-11), 58.01 (1), 80.3 (0, C-13), 153.59 (0, C-12), 173.35 (0, C-10). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{Cl}: \mathrm{C}, 56.7 ; \mathrm{H}, 7.6 ; \mathrm{N}, 4.4$. Found: C, 56.9; H, 7.9; N, 4.3 .

In the same manner as described above, treatment of ($1 S, 2 S, 5 S$)-23 with POCl_{3} gave the chloro ester ($1 S, 2 R, 5 S$)-24a in 89% yield: ${ }^{1} \mathrm{H}$ NMR (two rotamers, $3 / 2$ ratio) $\delta 1.45$ (s, 9 H , t-BuO), 1.6-2.3 (m, 8 H), 2.45-2.60 (m, 1 H), 3.68, 3.70 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}$), $4.05-4.15$ (m, 1 H), 4.25-4.35, 4.4-4.5 (m, 1 H), 4.6-4.75 ($\mathrm{m}, 1 \mathrm{H}$)
$(1 S, 2 S, 5 R)-, \quad(1 S, 2 R, 5 R)-, \quad(1 S, 2 S, 5 S)-, \quad$ and (1S,2R,5S)-9-(tert-Butoxycarbonyl)-2-iodo-5-(methoxy-carbonyl)-9-azabicyclo[4.2.1]nonane (24b). A solution of hydroxy esters 23 ($567 \mathrm{mg}, 1.89 \mathrm{mmol}$) in toluene (4 mL) was added to a mixture of triphenylphosphine ($621 \mathrm{mg}, 2.37 \mathrm{mmol}$, $125 \mathrm{~mol} \%$), imidazole ($516 \mathrm{mg}, 7.57 \mathrm{mmol}, 400 \mathrm{~mol} \%$), and iodine ($625 \mathrm{mg}, 2.46 \mathrm{mmol}, 130 \mathrm{~mol} \%$) in toluene (15 mL). The resulting mixture was heated at reflux for 20 min , cooled to room temperature, diluted with EtOAc (15 mL), and washed with 10% $\mathrm{Na}_{2} \mathrm{CO}_{3}, 1 / 1$ saturated $\mathrm{Na}_{2} \mathrm{SO}_{3} / 1 \mathrm{~N}, \mathrm{NaOH}$, and brine (30 mL each). The separate aqueous layers were back-extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic phase was dried, filtered, and evaporated to a white solid that was purified by LPC ($1 / 9 \mathrm{EtOAc} /$ hexanes) to give a mixture of iodo esters $\mathbf{2 4 b}$ (636 $\mathrm{mg}, 82 \%$ yield).

In separate experiments, the individual diastereomeric alcohols 23 were converted to the iodo esters 24b as described above.
($1 S, 2 S, 5 R$)-24b: 82% yield; mp 119- $120{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (two rotamers, $1 / 1$) $\delta 1.30-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.48$ ($\mathrm{s}, 9 \mathrm{H}, t$-BuO), $1.58-1.73$ ($\mathrm{m}, 1 \mathrm{H}$), 1.94-2.13, 2.14-2.35 (m, 5 H), 3.24 (ddd, $0.5 \mathrm{H}, J=2.4$, $7.2,9.3, \mathrm{H}-5 \beta$), 3.42 (ddd, $0.5 \mathrm{H}, J=2.7,7.1,9.6, \mathrm{H}-5 \beta$), $3.68,3.70$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-11$), 4.32-4.40, 4.41-4.51, 4.53-4.62, 4.64-4.73 (m, 3 H , $\mathrm{H}-1, \mathrm{H}-2 \beta, \mathrm{H}-6$); ${ }^{13} \mathrm{C}$ NMR (two rotamers, 1/1) $\delta 26.35$ (2), 27.07 (2), 27.11 (2), 27.28 (2), 27.96 (2), 28.41 (3, $3 \mathrm{C}, \mathrm{C}-14$), 28.93 (2), 33.94 (1, C-2), 34.23 (2), 34.62 (1, C-2), 45.21 (1, C-5), 46.36 (1, C-5), 51.61 (3, C-11), 51.66 (3, C-11), 56.31 (1, C-6 or C-1), 56.41 ($1, \mathrm{C}-6$ or $\mathrm{C}-1$), 62.67 ($1, \mathrm{C}-1$ or C-6), 63.02 (1, C-1 or C-6), 80.20 (0, C-13), $152.73(0, \mathrm{C}-12), 152.81(0, \mathrm{C}-12), 173.95(0, \mathrm{C}-10), 174.22$ (0, C-10). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{INO}_{4}: \mathrm{C}, 44.0 ; \mathrm{H}, 5.9 ; \mathrm{N}, 3.4$. Found: C, 44.3; H, 6.0; N, 3.3 .
($1 S, 2 R, 5 R$)-24b: 87% yield; clear oil; ${ }^{1} \mathrm{H}$ NMR (two rotamers, 1/1) $\delta 1.48$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}-14$), $1.53-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.95-2.35(\mathrm{~m}, 3 \mathrm{H})$, 2.54-2.67 (m, 2 H), 2.75-2.93 (m, $1 \mathrm{H}, \mathrm{H}-5 \beta$), 3.69, 3.72 (s, 3 H , H-11), 4.19-4.30, 4.33-4.52, 4.60-4.70 (m, 3 H, H-1, H-2 $\alpha, \mathrm{H}-6$); ${ }^{13} \mathrm{C}$ NMR (two rotamers, $1 / 1$) $\delta 21.81$ (2), 21.96 (2), 24.76 (2), 25.04
(2), 28.30 (3, C-14), 28.35 (3, C-14), 28.70 (2), 29.15 (2), 29.76 (1, C-2), 30.20 (1, C-2), 34.36 (2), 44.11 (1, C-5?), 44.63 (1, C-5?), 45.48 (1, C-6 or C-1), 47.13 (1, C-6 or C-1), 50.23 (1, C-1 or C-6), 51.70 (3, C-11), 51.82 (3, C-11), 52.11 (1, C-1 or C-6), 80.31 ($0, \mathrm{C}-13$), 80.36 (0, C-13), 153.25 ($0, \mathrm{C}-12$), 173.21 (0, C-10). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{INO}_{4}$: $\mathrm{C}, 44.0 ; \mathrm{H}, 5.9 ; \mathrm{N}, 3.4$. Found: C, $44.0 ; \mathrm{H}, 6.0$; $\mathrm{N}, 3.4$.
($\mathbf{1 S , 2 S}, 5 S$)-24b: 67% yield; clear oil; ${ }^{1} \mathrm{H}$ NMR $\delta 1.41$ (s, 9 H , t - BuO), $1.4-2.65(\mathrm{~m}, 9 \mathrm{H}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 4.28-4.45(\mathrm{~m}, 1$ $\mathrm{H}), 4.48,4.50(\mathrm{t}, 1 \mathrm{H}, J=4.0), 4.64(\mathrm{brd}, 1 \mathrm{H}, J=8)$; ${ }^{13} \mathrm{C} \mathrm{NMR}$ $\delta 24.15$ (2), 28.13 (3, 3 C, C-14), 28.43 (2), 32.53 (1, C-2), 34.84 (2), 35.28 (2), 51.76 (3, C-11), 52.76 (1, C-5), 57.04 (1), 62.38 (1), 80.38 ($0, \mathrm{C}-13$), 153.06 ($0, \mathrm{C}-12$), 173.96 ($0, \mathrm{C}-10$). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{INO}_{4}: \mathrm{C}, 44.0 ; \mathrm{H}, 5.9 ; \mathrm{N}, 3.4$. Found: C, $44.0 ; \mathrm{H}, 5.9 ; \mathrm{N}$, 3.2 .
($\mathbf{1 S}, \mathbf{2 R}, \mathbf{5 S}$)-24b: $\mathbf{8 7 \%}$ yield; clear oil; ${ }^{1} \mathrm{H}$ NMR (two rotamers, $2 / 1) \delta 1.39(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{BuO}), 1.55-2.58(\mathrm{~m}, 9 \mathrm{H}), 3.62,3.65(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{O}$), 4.21-4.49 (m, 2 H), 4.64-4.68, 4.70-4.76 (m, 1 H); ${ }^{33} \mathrm{C}$ NMR (major rotamer) $\delta 21.08$ (2), 22.18 (2), 28.17 (3, $3 \mathrm{C}, \mathrm{C}-14$), 30.17 (1, C-2), 31.77 (2), 32.87 (2), 43.24 (1), 47.44 (1), 49.78 (1, C-5), 51.66 (3, C-11), 79.91 ($0, \mathrm{C}-13$), 153.54 ($0, \mathrm{C}-12$), $174.10(0, \mathrm{C}-10$); (minor rotamer) $\delta 20.97$ (2), 22.18 (2), 28.17 (3, $3 \mathrm{C}, \mathrm{C}-14$), 30.75 (1, C-2), 32.35 (2), 32.43 (2), 42.76 (1), 46.01 (1), 51.76 (1, C-5), 51.85 (3, C-11), 80.05 ($0, \mathrm{C}-13$), $153.42(0, \mathrm{C}-12), 173.83(0, \mathrm{C}-10)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{INO}_{4}: \mathrm{C}, 44.0 ; \mathrm{H}, 5.9 ; \mathrm{N}, 3.4$. Found: C, 43.8; H, 6.0; N, 3.4 .

Hydrolysis of the Iodo Esters. ($1 S, 2 S, 5 R$)-, $(1 S, 2 R, 5 R)$-, ($1 S, 2 S, 5 S$)-, and ($1 S, 2 R, 5 S$)-9-(tert-Butoxycarbonyl)-5-carboxy-2-iodo-9-azabicyclo[4.2.1]nonane. A solution of KOH ($872 \mathrm{mg}, 15.5 \mathrm{mmol}, 1000 \mathrm{~mol} \%$) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to a solution of iodo esters 24 b ($636 \mathrm{mg}, 1.55 \mathrm{mmol}$) in methanol (15 mL). After the mixture was stirred at room temperature overnight (14 h), most of the solvent was evaporated, and the residue was diluted with brine (30 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 15 \mathrm{~mL})$. The aqueous layer was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, chilled in an ice bath ($4^{\circ} \mathrm{C}$), and adjusted to pH 3.2 with 7 M $\mathrm{H}_{3} \mathrm{PO}_{4}$. The aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$, and the combined organic phase was dried, filtered, and evaporated to give the iodo acids (all four isomers; $610 \mathrm{mg}, 99 \%$) as a foamy white solid. An analytical sample of this epimeric mixture was prepared by column chromatography (EtOAc/hexanes). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{I}$: C, 42.6; H, 5.6; $\mathrm{N}, 3.5$. Found: C, 43.0; H, 5.6; N, 3.5 .

Dehydrohalogenation of the Iodo Acids. ($1 R, 2 R$)- and ($1 R, 2 S$)-9-(tert-Butoxycarbonyl)-2-carboxy-9-azabicyclo-[4.2.1]non-4-ene (17) and ($1 R, 2 R$)- and ($1 R, 2 S$)-9-(tert-Butoxycarbonyl)-2-carboxy-9-azabicyclo[4.2.1]non-3-ene (19, $\mathbf{R}=\mathbf{O H}$). Solid potassium tert-butoxide (sublimed; $298 \mathrm{mg}, 2.66$ $\mathrm{mmol}, 350 \mathrm{~mol} \%$) was added to a solution of the iodo acids (300 $\mathrm{mg}, 0.76 \mathrm{mmol}$) in N, N-dimethylacetamide (DMA, 7.5 mL). The resulting solution was heated at $125^{\circ} \mathrm{C}$ for 3 h , cooled to room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with 1 $\mathrm{N} \mathrm{NaOH}(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (10 mL), and the combined organic layer was washed with 1 N $\mathrm{NaOH}(10 \mathrm{~mL})$. To the combined basic aqueous layers was added $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$, and the resulting mixture was chilled in an ice bath and adjusted to pH 3.5 with $7 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$. The aqueous layer was again extracted with $\mathrm{CHCl}_{3}(4 \times 10 \mathrm{~mL})$, the combined organic phase was dried, filtered, and evaporated, and residual DMA was removed by heating at $50^{\circ} \mathrm{C}$ in a Kugelrohr apparatus for 2 h to give a yellow oil (202 mg) that was purified by column chromatography ($1 / 3$ to $1 / 1 \mathrm{EtOAc} /$ hexanes) to give a mixture of olefinic acids 17 and $19(\mathrm{R}=\mathrm{OH})(148 \mathrm{mg}, 73 \%)$ as a clear oil: ${ }^{1} \mathrm{H}$ NMR (mixture of double bond isomers, both epimers at C-2) $\delta 1.2-2.2(\mathrm{~m}, 5 \mathrm{H}), 1.43$ and 1.45 and $1.47(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{BuO}), 2.41-2.58$ ($\mathrm{m}, 1 \mathrm{H}$), 2.62-2.76 (m, ca. 1 H), 2.98-3.04 and 3.11-3.18 (m, H-2 $)_{\text {) , }}$ 4.55 and 4.68 (br s, 1 H$), 4.81$ (dist t) and 4.91 (br d) (1 H total), $5.56-5.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.92$ (dist t) and 5.96-6.08 (m) (1 H total, $\mathrm{H}-5$); ${ }^{13} \mathrm{C}$ NMR (mixture of double bond isomers, both epimers at C-2) $\delta 17.27$ (2), 17.89 (2), 18.93 (2), 19.72 (2), 24.10 (2), 25.13 (2), 25.61 (2), 25.75 (2), 26.23 (2), 26.48 (2), 27.48 (2), 27.94 (2), 28.19 (3, 3 C), 28.34 (3, 3 C), 28.44 (3, 3 C), 30.87 (2), 31.33 (2), 45.57 (1), 45.82 (1), 45.96 (1), 46.37 (1), 47.41 (1), 54.61 (1), 55.15 (1), 56.82 (1), 57.11 (1), 79.78 (0), 79.95 (0), 126.42 (1), 126.53 (1), 126.63 (1), 127.13 (1), 127.23 (1), 127.72 (1), 135.83 (1), 153.92 (0), $177.86(0), 178.18$ (0). Anal. Caled for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{C}, 62.9 ; \mathrm{H}$,
7.9; N, 5.2. Found: C, 62.7; H, 7.9; N, 5.1.
($1 R, 2 R$)- and ($1 R, 2 S$)-9-(tert-butoxycarbonyl)-2-(meth-oxycarbonyl)-9-azabicyclo[4.2.1]non-3-ene (19, $\mathrm{R}=\mathrm{OCH}_{3}$) were obtained (along with their respective γ, δ-unsaturated isomers) by treatment of the iodo acids with excess potassium tert-butoxide ($300 \mathrm{~mol} \%$) in DMA (0.1 M) at $125^{\circ} \mathrm{C}$ according to the dehydrohalogenation procedure described above. After 3 h the reaction mixtures were cooled to $0^{\circ} \mathrm{C}$, calcined $\mathrm{K}_{2} \mathrm{CO}_{3}(500 \mathrm{~mol} \%)$ and iodomethane ($300 \mathrm{~mol} \%$) were added, and stirring was continued at room temperature for 90 min . Aqueous workup followed by

LPC (3/17 EtOAc/hexanes) gave 18 and $19\left(\mathrm{R}=\mathrm{OCH}_{3}\right)$ in a combined 72% yield.

Acknowledgment. F.J.S. thanks the Spanish Ministry of Education and Science and the Fulbright Commission for a fellowship. M.M. thanks the University of California for a President's Undergraduate Research Fellowship. This research was supported in part by the NIH, Grant NS 25296.

Vinylphosphonium Salts: Stereoselective Palladium-Catalyzed Vinylation of Triphenylphosphine with Vinyl Triflates

Robert J. Hinkle, Peter J. Stang,* and Mark H. Kowalski
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Received April 3, 1990

Abstract

The reaction of vinyl triflates with a slight excess of triphenylphosphine and $1-3 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in refluxing THF results in the formation of the corresponding vinyltriphenylphosphonium triflate salts in good yield. A wide variety of salts, including cyclic ones, can be prepared. Unlike past syntheses of these compounds, pure stereoisomeric starting triflates stereoselectively yield stereoisomeric products. The current synthesis is especially useful for the preparation of Z isomers.

Vinylphosphonium salts ${ }^{1-3}$ are useful for cycloadditions, ${ }^{4-8}$ for Michael additions, for the synthesis of heterocyclic compounds, ${ }^{9-12}$ and as reagents in a variety of other transformations. ${ }^{13,14}$ Unfortunately, the syntheses of vinylphosphonium salts have been limited to mixtures of isomers, or at best the E isomers, exclusively. ${ }^{15}$ As a result, studies of the Michael additions and, more importantly, $[2+4]$ cycloaddition ${ }^{4}$ reactions have only been carried out to a very limited degree and most extensively with the parent salt (vinyltriphenylphosphonium bromide), available commercially as Schweizer's reagent. ${ }^{16}$
Previously used syntheses include additions of triphenylphosphine to allyl bromide followed by base-cata-

[^4]lyzed prototropic rearrangement, ${ }^{9}$ additions to alkynylphosphonium salts, ${ }^{11}$ and, most recently, the oxidative elimination of phenyl selenoxide from cyclic alkyl phenyl selenides. ${ }^{5}$ As we recently reported in preliminary form, a wide variety of vinylphosphonium salts can now be synthesized stereoselectively by the palladium-catalyzed coupling of vinyl triflates with triphenylphosphine. ${ }^{17}$ The most beneficial aspect of this synthesis is that the previously unavailable Z isomers of the salts can be obtained in good yield. Herein we report the full details of this novel, new synthesis of vinylphosphonium species.

Results and Discussion

Attempts to synthesize stable (σ-vinyl)palladium(II) species using vinyl triflates and tetrakis(triphenylphosphine) palladium(0) resulted in the formation of the vinylphosphonium salts as the only isolable organic species. It was then established that this reaction could be carried out with catalytic quantities of palladium(0).

Interaction of vinyl triflates ${ }^{18} 1-5$ with a slight excess of triphenylphosphine and $1-3 \mathrm{~mol} \%$ of tetrakis(triphenylphosphine)palladium(0) in refluxing THF resulted in the corresponding vinylphosphonium salts $6-10$ in $62-90 \%$ isolated yields (eq 1). Reaction of triflate 1 with 1.05 equiv of PPh_{3} and $3 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ at $66{ }^{\circ} \mathrm{C}$ for 6 h gave 6 in 89% isolated yield. Crystallization of salts 6,8 , and 9 is rapid upon addition of hexanes or pentane, whereas compounds 7 and 10 crystallized only after extended periods of time at low temperatures. Passing the crude solutions through a plug of unactivated florisil before adding the alkanes facilitates crystallization. Alternatively,

[^5]
[^0]: (1) (a) Carmichael, W. W.; Biggs, D. F.; Gorham, P. R. Science 1975, 187, 542. (b) Devlin, J. P.; Edwards, O. E.; Gorham, P. R.; Hunter, N. R.; Pike, R. K.; Stavric, B. Can. J. Chem. 1977, 55, 1367.
 (2) (a) Aronstam, R. S.; Witkop, B. Proc. Natl. Acad. Sci. U.S.A. 1981, 78, 4639. (b) Swanson, K. L.; Allen, C. N.; Aronstam, R. S.; Rapoport, H.; Albuquerque, E. X. Mol. Pharmacol. 1986, 29, 250 and references therein.
 (3) (a) Petersen, J. S.; Fels, G.; Rapoport, H. J. Am. Chem. Soc. 1984, 106, 4539. (b) Koskinen, A. M. P.; Rapoport, H. J. Med. Chem. 1985, 28, 1301. (c) Petersen, J. S.; Toteberg-Kaulen, S.; Rapoport, H. J. Org. Chem. 1984, 49, 2948. (d) Sardina, F. J.; Howard, M. H.; Koskinen, A. M. P.; Rapoport, H. J. Org. Chem. 1989, 54, 4654, (e) Howard, M. H.; Sardina, F. J.; Rapoport, H. J. Org. Chem. 1990, 55, 2829. (f) Recently (Stjernlöf, P.; Trogen, L.; Andersson, A, Acta Chem. Scand. 1989, 43, 917) a resolution of racemic anatoxin has been reported to yield the $(+)$ and (-) enantiomers, $[\alpha]^{20} \mathrm{D}+37.0$ and -39.7° (lit. ${ }^{3 \mathrm{a}}[\alpha]^{24} \mathrm{D}^{2}+43.2^{\circ},-46.3^{\circ}$).

[^1]: (4) Shiosaki, K.; Rapoport, H. J. Org. Chem. 1985, 50, 1229.

[^2]: (6) Barton, D. H. R.; Bridon, D.; Fernandez-Picot, I.: Zard, S. Z. Tetrahedron 1987, 43, 2733. Barton, D. H. R.; Herve, Y.; Potier, P.; Thieery, J. J. Chem. Soc., Chem. Commun. 1984, 1298.
 (7) (a) Colguhoun, H. M.; Holton, J.; Thompson, D. J.; Twigg, M. V. In New Pathways for Organic Synthesis. Practical Applications of Transition Metals; Plenum: New York, 1984; Chapter 5. (b) Ando, M.; Kataoka, N.; Yasunami, M.; Takase, K.; Hirata, N.; Yanagi, Y. J. Org. Chem. 1987, 52, 1429. (c) Matlin, A. R.; Agosta, W. C. J. Chem. Soc., Perkin Trans. 1 1987, 365. (d) Andrieux, J.; Barton, D. H. R.; Patin, H. J. Chem. Soc., Perkin Trans. 1 1977, 359. (e) Grieco, P. A.; Nishizawa, M.; Marinovic, N.; Ehmann, W. J. J. Am. Chem. Soc. 1976, 98, 7102.
 (8) Norman, R. O. C.; Thomas, C. B. J. Chem. Soc. C 1967, 1115.
 (9) Newman, M. S.; Arkell, A.; Fukunaga, T. J. Am. Chem. Soc. 1960, 82, 2498.
 (10) Kozikowski, A. P.; Li, C.-S. J. Org. Chem. 1987, 52, 3541.
 (11) Nace, H. R. Org. React. 1962, 12, 57.
 (12) Majetich, G.; Greico, P. A.; Nishizawa, M. J. Org. Chem. 1977, 42, 2327.
 (13) (a) Burgess, E. M.; Penton, H. R., Jr.; Taylor, E. A.; Williams, W. M. Org. Synth. 1977, 56, 40. (b) Burgess, E. M.; Penton, H. R., Jr.; Taylor, E. A. J. Am. Chem. Soc. 1970, 92, 5224. (c) Nagel, A. A.; DiBrino, J.; Vincent, L. A.; Retsema, J. A. J. Med. Chem. 1982, 25, 881.
 (14) A mechanistic study of this reaction and leading references are presented in: Garegg, P. J.; Regberg, T.; Stawinski, J.; Strömberg, R. J. Chem. Soc., Perkin Trans. 2 1987, 271.

[^3]: (16) Mozingo, R. Organic Syntheses; Wiley: New York, 1955; Collect.

[^4]: (1) For recent reviews, see: Organophosphorous Chemistry; Allen, D. W., Walker, B. J., Hobbs, J. B., Eds.; Royal Society: London, 1988; Vol. 19, pp 21-25. Ibid. 1987; Vol. 18, pp 23-27.
 (2) Larpent, L.; Patin, H. Tetrahedron Lett. 1988, 29, 4577.
 (3) Zbiral, E. In Organophosphorous Reagents in Organic Synthesis; Cadogan, J. I. G., Ed.; Academic: New York, 1979; Chapter 5, pp 223-268.
 (4) Bonjouklian, R.; Ruden, R. A. J. Org. Chem. 1977, 42, 4095.
 (5) Okada, Y.; Minami, T.; Yahiro, S.; Akinaga, K. J. Org. Chem. 1989, 54, 974 .
 (6) Minami, T.; Chikugo, T.; Hanamoto, T. J. Org. Chem. 1986, 51, 2210.
 (7) Minami, T.; Hanamoto, T.; Hirao, I. J. Org. Chem. 1985, 50, 1278.
 (8) Minami, T.; Sako, H.; Ikehira, T.; Hanamoto, T.; Hirao, I. J. Org.

 Chem. 1983, 48, 2569.
 (9) McIntosh, J. M.; Goodbrand, G. M. J. Org. Chem. 1974, 39, 202.
 (10) Schweizer, E. E.; Wehman, A. T.; Nycz, D. M. J. Org. Chem. 1973, $38,1583$.
 (11) Schweizer, E. E.; De Voe Goff, S.; Murray, W. P. J. Org. Chem. 1977, 42, 200.
 (12) Schweizer, E. E.; Labaw, C. S. J. Org. Chem. 1973, 38, 3069.
 (13) Barton, D. H. R.; Togo, H.; Zard, S. Z. Tetrahedron Lett. 1985, 26, 6349.
 (14) Meyers, A. I.; Lawson, J. P.; Carver, D. R. J. Org. Chem. 1981, 46, 3119.
 (15) Pattenden, G.; Walker, B. J. J. Chem. Soc. C 1969, 531.
 (16) Aldrich Chemical Co.

[^5]: (17) Kowalski, M. H.; Hinkle, R. J.; Stang, P. J. J. Org. Chem. 1989, 54, 2783.
 (18) Stang, P. J.; Hanack, M.; Subramanian, L. R. Synthesis 1982, 85.

